
- •Н.М. Талыкова, в.Ф. Турецкова, н.В. Сухотерина Твердые лекарственные формы
- •Часть II. Таблетки. Драже.
- •Микродраже. Спансулы. Медулы. Гранулы
- •Введение
- •Раздел III. Таблетки (tabulettae)
- •1. Таблетки как лекарственная форма
- •Эксплуатационные:
- •2. Основные требования, предъявляемые к таблеткам, и условия их достижения
- •Точность дозирования
- •Механическая прочность
- •Распадаемость и «растворение» таблеток
- •3. Физико-химические свойства порошкообразных лекарственных средств
- •Технологические свойства порошкообразных лекарственных средств
- •Современное представление о природе связи в таблетках (теории таблетирования)
- •Вспомогательные вещества в производстве таблеток
- •7. Технологический процесс получения таблеток различными способами
- •Технологические схемы производства таблеток различными способами представлены на рис. 6.
- •(Л.А. Иванова, 1991)
- •Определение скорости высвобождения (тест «Растворение») вещества из таблетки
- •8. Тритурационне таблетки
- •9. Некоторые пути совершенствования таблеток как лекарственных форм
- •10. Общие сведения о современной номенклатуре таблеток
- •11. Обучающий и контролирующий тест
- •6. Таблетки покрывают оболочками для:
- •7. Стадии нанесения оболочек на таблетки методом дражирования (наращивания):
- •8. Установите соответствие:
- •2. На фракционный состав
- •4. Улучшение органолептических свойств таблетки
- •12. Ситуационные задачи и эталоны решений
- •Таблетки стрептоцида при сжигании и прокаливании составляют 5,3% несгораемого остатка. Правильно ли приготовлены таблетки.
- •В состав одной таблетки «Бекарбон» входят:
- •На рисунке представлены фармакокинетические кривые:
- •Составьте технологическую схему производства таблеток кислоты ацетилсалициловой 0,5 методом прямого прессования с добавлением вспомагательных веществ.
- •Составьте аппаратурную схему производства таблеток натрия хлорида 0,9 методом прямого прессования.
- •Таблетки ацидин-пепсин содержат 1 часть пепсина и 4 части бетаина гидрохлорида. Каковы условия хранения этого препарата, обоснуйте?
- •13. Вопросы для самоконтроля
- •Раздел IV. Драже, микродраже, спансулы, гранулы
- •1. Драже (Dragee)
- •1.1. Характеристика драже
- •1.2. Технологическая схема получения драже
- •(Л.С. Новикова, 1997)
- •На флаконы (модель ц2159) (л.С. Новикова, 1997)
- •1.3. Вспомогательные вещества в производстве драже
- •1.4. Номенклатура драже
- •2. Микродраже (Microdragee). Спансулы (Spansulae). Медулы (Medulae)
- •3. Гранулы (Granula)
- •4. Обучающий контролирующий тест
- •В соответствии с дисперсологической классификацией установите соответствие:
- •2. Выберите наиболее правильное и точное определение драже как лекарственной формы:
- •3. К преимуществам гранул как лекарственной формы относятся: 1. Возможность совмещения реагирующих между собой ингредиентов.
- •4. Установите правильную последовательность стадий изготовления драже:
- •5. Установите соответствие:
- •5. Ситуационные задачи и эталоны решений
- •2. На рисунке предствлены кривые высвобождения аминазина из двух серий драже:
- •3. На рисунке представлены фармакокинетические кривые:
- •5. На приборе типа «вращающаяся корзинка» для серии драже при пятикратной повторности опыта получили следующие результаты:
- •6. Вопросы для самоконтроля
- •Литература
- •Оглавление Введение……………………………………………………………3 Раздел 3. Таблетки………………………………………………..5
- •Раздел 4. Драже. Микродраже. Спансулы.
- •Твердые лекарственные формы
- •Часть II. Таблетки. Драже.
Современное представление о природе связи в таблетках (теории таблетирования)
Механическая теория таблетирования основана на том, что связь между частицами в таблетке является чисто механической, обусловленной площадью контактирующих поверхностей, а также взаимным переплетением и зацеплением поверхностных выступов и неровностей частиц. В результате приложенного давления частицы сдвигаются, скользят по отношению друг к другу и вступают в более тесный контакт. При этом изодиаметрические частицы скользят легче, чем шероховатые и анизодиаметрические, зато последние создают большое количество зацеплений и поэтому придают таблетке большую прочность.
К механической теории структурообразования таблеток примыкает «теория спекания». Она приложима только к веществам с невысокой точкой плавления, в которых под влиянием давления при сближении частиц происходит не только их зацепление, но и спаивание (под влиянием разогревания таблетируемой массы) в отдельных точках соприкосновения.
Однако механический контакт сцепления нельзя рассматривать в качестве универсального средства, так как на поведение частиц под давлением влияют также физико-химические свойства таблетируемых лекарственных веществ и те явления, которые возникают на поверхности их частиц при прессовании.
Капиллярно-коллоидная теория. Сущность капиллярно-коллоидной теории состоит в том, что таблетируемая масса рассматривается как система, пронизанная многочисленными порами или капиллярами, заполненными водой (остаточная влажность). Количество и величина капилляров зависят от таблетируемого материала. При прессовании капилляры деформируются, и выжатая из них вода тонкой пленкой покрывает поверхность частиц или гранул, кристаллов, способствуя их взаимному скольжению и тесному соприкосновению (поверхностно-активная смазка). Под действием развивающихся при этом межмолекулярных (ван-дер-ваальсовых) сил частицы сцепляются между собой. Действие межмолекулярных сил зависит от толщины слоя жидкости: чем он тоньше, тем интенсивнее сцепление между частицами, при более толстом слое воды ван-дер-ваальсовы силы молекулярного притяжения ослаблены. При снятии давления капилляры таблетируемой массы по закону капиллярного всасывания стремятся поглотить выжатую воду, но это невозможно, так как в капиллярных системах с радиусом 10-6 (таковые имеют место в таблетках) под влиянием высокой всасывающей силы (по П.А. Ребиндеру, до 150 кг/см2) создается вакуум, приводящий к сжатию капилляров. В итоге вода остается на поверхности частиц адсорбированной в виде тонких пленок, что в свою очередь способствует возрастанию сил сцепления между частицами.
Электростатическая теория таблетирования основана на том, что в процессе прессования одновременно с ориентацией частиц, трением поверхностей, сжатием в каком-либо направлении происходят их поляризация и возникновение поверхностных зарядов. На границе возникает контактная разность потенциалов с повышением которой увеличиваются силы сцепления (адгезии). По данным Е.Е. Борзунова, на некоторых таблетках поверхностный заряд достигает 20 В.
В настоящее время, процесс таблетирования рассматривают с позиций всех перечисленных представлений. Иначе говоря, характер соединения частиц в таблетке основывается на комплексном взаимодействии молекулярных (ван-дер-ваальсовых), капиллярных и электрических сил между контактирующими поверхностями, а также на их механическом заклинивающем сцеплении под давлением в условиях оптимального влагосодержания.