- •§7. Поле алгебраических чисел и его замкнутость
- •§ 8. Понятие о разрешимости уравнений в радикалах.
- •§ 9 Пифагоровы расширения и разрешимость уравнений в квадратных радикалах
- •§ 10.Числа, допускающие построение циркулем и линейкой.
- •§ 11. О некоторых признаках разрешимости и неразрешимости задач на построение.
- •2. Задача об удвоении куба.
- •3. Задача о трисекции угла.
- •§ 12.Построение правильных многоугольников.
- •Историческая справка
§ 11. О некоторых признаках разрешимости и неразрешимости задач на построение.
Критерий разрешимости задач на построение, указанный в теореме § 10, практически не всегда удобен. Мы укажем более простые признаки, вытекающие из этой теоремы.
Теорема 1.
Если число
можно построить циркулем и линейкой,
исходя из множество чисел
,
то
является алгебраическим относительно
исходного поля
числом степени
,
Доказательство
непосредственно следует из упомянутой
выше теоремы §7 и св. 3
§9 .
Теорема 1 выражает
необходимый признак разрешимости задач
на построение. Если число
не является алгебраическим относительно
исходного поля
или
– алгебраическое, но его степень над
полем
отлична от
,
,
то это число циркулем и линейкой построить
невозможно.
В качестве примера на применение теоремы 1 рассмотрим три древние задачи: квадратура круга, удвоение куба и трисекции угла. Многочисленные и безуспешные попытки решить эти задачи и привели к возникновению теории геометрических построений.
Задача о квадратуре круга. С помощью циркуля и линейки построить квадрат, равновеликий заданному кругу. Выберем систему координат так, что начало лежит в центре заданного круга, а точка (1,0) на окружности. Тогда исходное поле совпадает с полем рациональных чисел. Площадь круга равна
и, следовательно, длина ребра искомого
квадрата равна
.
Так как
и
–
трансцендентные числа, то в силу
теоремы 1 построение ребра, а,
следовательно, и самого квадрата,
невозможно.
Задачу о квадратуре круга, имеющую 2-х тысячелетнюю историю, решал еще Архимед (3в. до н.э.). Впервые предположения о невозможности построения были высказаны в ХV (Леонардо да Винчи и др.). Многочисленная кагорта “квадратистов включала ” не только ученых математиков, но и часть людей, не связанных с математикой (делитантов). Это с чрезвычайно простой постановкой задачи. В связи с большим наплывом “решений” задачи при Французской академии наук была создана специальная комиссия по рассмотрению этих решений. Но поскольку наплыв “решений” не ослабевал, комиссия была ликвидирована, С “квадратистами” было покончено в 1882г. после того, как Линдеман доказал трансценденетность числа .
2. Задача об удвоении куба.
(0,0) 1
или
Построить ребро куба, объем которого в два раза больше объема заданного куба.
Выберем систему
координат так, чтобы концы ребра заданного
куба лежали в точках (0,0) и (1,0), а длину
искомого куба обозначим через
.
Исходным полем снова будет поле
рациональных чисел, а задача сводится
к построению действительного корня
многочлена
.
Этот многочлен по признаку Эйзенштейна
неприводим над полем
и поэтому все его корни являются
алгебраическими числами степени 3. Так
как
,
то такие корни построить невозможно.
