
Матричный метод решения систем линейных уравнений.
В
этой статье поговорим о матричном методе
решения систем линейных алгебраических
уравнений вида
,
которые в матричной форме записываются
как
,
где
-
основная матрица системы,
-
матрица-столбец неизвестных переменных,
-
матрица свободных членов.
Сначала
опишем суть матричного метода, остановимся
на условии применимости этого метода,
далее подробно разберем решения
нескольких примеров.
Сразу
оговоримся, что решение систем линейных
алгебраических уравнений матричным
методом и решение СЛАУ с помощью обратной
матрицы есть одно и то же. Поэтому
рекомендуем освежить в памяти теорию
раздела обратная
матрица: определение, свойства, методы
нахождения.
Приступим.
Пусть
для матрицы А
порядка n
на n
существует обратная матрица
.
Умножим обе части матричного уравнения
слева
на
(порядки
матриц A
⋅
X
и В
позволяют произвести такую операцию,
смотрите статью операции
над матрицами, свойства операций).
Имеем
.
Так как для операции умножения матриц
подходящих порядков характерно свойство
ассоциативности, то последнее равенство
можно переписать как
,
а по определению обратной матрицы
(E
– единичная матрица порядка n
на n),
поэтому
Таким
образом, решение
системы линейных алгебраических
уравнений по матричному методу
определяется равенством
.
Другими словами, решение СЛАУ находится
с помощью обратной матрицы
.
Мы
знаем, что квадратная матрица А
порядка n
на n
имеет обратную матрицу
только
тогда, когда ее определитель не равен
нулю. Следовательно, СИСТЕМУ n
ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ С n
НЕИЗВЕСТНЫМИ МОЖНО РЕШАТЬ МАТРИЧНЫМ
МЕТОДОМ ТОЛЬКО ТОГДА, КОГДА ОПРЕДЕЛИТЕЛЬ
ОСНОВНОЙ МАТРИЦЫ СИСТЕМЫ ОТЛИЧЕН ОТ
НУЛЯ.
Рассмотрим матричный
метод на примерах. В некоторых примерах
мы не будем подробно описывать процесс
вычисления определителей матриц, при
необходимости обращайтесь к статье
вычисление
определителя матрицы.
Пример.
С
помощью обратной матрицы найдите решение
системы линейных уравнений
.
Решение.
В
матричной форме исходная система
запишется как
,
где
.
Вычислим определитель основной матрицы
и убедимся, что он отличен от нуля. В
противном случае мы не сможем решить
систему матричным методом. Имеем
,
следовательно, для матрицы А
может быть найдена обратная матрица
.
Таким образом, если мы отыщем обратную
матрицу, то искомое решение СЛАУ определим
как
.
Итак, задача свелась к построению
обратной матрицы
.
Найдем ее.
Мы знаем, что для матрицы
обратная
матрица может быть найдена как
,
где
-
алгебраические дополнения элементов
.
В
нашем случае
Тогда
Выполним
проверку полученного решения
,
подставив его в матричную форму исходной
системы уравнений
.
Это равенство должно обратиться в
тождество, в противном случае где-то
была допущена ошибка.
Следовательно,
решение найдено верно.
Ответ:
или
в другой записи
.
Системы линейных уравнений: основные понятия
24 Июня 2011
Определение. Система линейных уравнений — это объединение из n линейных уравнений, каждое из которых содержит k переменных. Записывается это так:
Многие, впервые сталкиваясь с высшей алгеброй, ошибочно полагают, что число уравнений обязательно должно совпадать с числом переменных. В школьной алгебре так обычно и бывает, однако для высшей алгебры это, вообще говоря, неверно.
Определение. Решение системы уравнений — это последовательность чисел (k1, k2, ..., kn), которая является решением каждого уравнения системы, т.е. при подстановке в это уравнение вместо переменных x1, x2, ..., xn дает верное числовое равенство.
Соответственно, решить систему уравнений — значит найти множество всех ее решений или доказать, что это множество пусто. Поскольку число уравнений и число неизвестных может не совпадать, возможны три случая:
Система несовместна, т.е. множество всех решений пусто. Достаточно редкий случай, который легко обнаруживается независимо от того, каким методом решать систему.
Система совместна и определена, т.е. имеет ровно одно решение. Классический вариант, хорошо известный еще со школьной скамьи.
Система совместна и не определена, т.е. имеет бесконечно много решений. Это самый жесткий вариант. Недостаточно указать, что «система имеет бесконечное множество решений» — надо описать, как устроено это множество.
Определение. Переменная xi называется разрешенной, если она входит только в одно уравнение системы, причем с коэффициентом 1. Другими словами, в остальных уравнениях коэффициент при переменной xi должен быть равен нулю.
Если в каждом уравнении выбрать по одной разрешенной переменной, получим набор разрешенных переменных для всей системы уравнений. Сама система, записанная в таком виде, тоже будет называться разрешенной. Вообще говоря, одну и ту же исходную систему можно свести к разным разрешенным, однако сейчас нас это не волнует. Вот примеры разрешенных систем:
Обе системы являются разрешенными относительно переменных x1, x3 и x4. Впрочем, с тем же успехом можно утверждать, что вторая система — разрешенная относительно x1, x3 и x5. Достаточно переписать самое последнее уравнение в виде x5 = x4.
Теперь рассмотрим более общий случай. Пусть всего у нас k переменных, из которых r являются разрешенными. Тогда возможны два случая:
Число разрешенных переменных r равно общему числу переменных k: r = k. Получаем систему из k уравнений, в которых r = k разрешенных переменных. Такая система является совместной и определенной, т.к. x1 = b1, x2 = b2, ..., xk = bk;
Число разрешенных переменных r меньше общего числа переменных k: r < k. Остальные (k − r) переменных называются свободными — они могут принимать любые значения, из которых легко вычисляются разрешенные переменные.
Так, в приведенных выше системах переменные x2, x5, x6 (для первой системы) и x2, x5 (для второй) являются свободными. Случай, когда есть свободные переменные, лучше сформулировать в виде теоремы:
Теорема. Если в системе из n уравнений переменные x1, x2, ..., xr — разрешенные, а xr + 1, xr + 2, ..., xk — свободные, то:
Если задать значения свободным переменным (xr + 1 = tr + 1, xr + 2 = tr + 2, ..., xk = tk), а затем найти значения x1, x2, ..., xr, получим одно из решений.
Если в двух решениях значения свободных переменных совпадают, то значения разрешенных переменных тоже совпадают, т.е. решения равны.
В чем смысл этой теоремы? Чтобы получить все решения разрешенной системы уравнений, достаточно выделить свободные переменные. Затем, присваивая свободным переменным разные значения, будем получать готовые решения. Вот и все — таким образом можно получить все решения системы. Других решений не существует.
Вывод: разрешенная система уравнений всегда совместна. Если число уравнений в разрешенной системе равно числу переменных, система будет определенной, если меньше — неопределенной.
И все бы хорошо, но возникает вопрос: как из исходной системы уравнений получить разрешенную? Для этого существует метод Гаусса.