Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
voprosiki.docx
Скачиваний:
10
Добавлен:
27.09.2019
Размер:
267.65 Кб
Скачать
  1. Теорема Ферма.

Пусть функция f(x) определена и дифференцируема на интервале (a, b) и в некоторой точке x0 этого интервала имеет наибольшее или наименьшее значение. Тогда f '(x0) = 0.

Доказательство. Пусть для определенности функция f (x) в точке x0 имеет наибольшее значение, т.е. f (x) ≤ f (x0) для любого x Î (a, b). Это значит, что Δ y = f(x0 + Δx) - f(x0) ≤ 0 для любого приращения аргумента Δ x и x0 + Δ x Î (a, b).

Если Δx > 0, имеем , если же Δx < 0, то . По условию f ' (x0) существует и, значит, . Это возможно только в случае, когда .

Геометрический смысл теоремы Ферма состоит в том, что, если в точке x0 дифференцируемая функция f(x) имеет наибольшее или наименьшее значение, то в точке (x0; f (x0)) касательная к графику функции f (x) параллельна оси Ox.

Замечание. Теорема неверна, если функцию f (x) рассматривать на замкнутом отрезке [a, b]. Например, функция f (x) = x на отрезке [0; 1] в точке x = 0 принимает наименьшее, а в точке x = 1 — наибольшее значение, однако, как в той, так и в другой точке производная в нуль не обращается, а равна единице.

  1. Теорема Ролля.

Пусть функция f (x) непрерывна на [a, b], дифференцируема на (a, b) и на концах отрезка принимает равные значения f(a) = f(b). Тогда существует точка c Î (a, b), в которой f ' (c) = 0.

Доказательство. Так как функция f(x) непрерывна на [a, b],то по свойству непрерывных функций она достигает на этом отрезке максимальное значение М и минимальное значение m.

Возможны два случая: максимум и минимум достигаются на концах отрезка или что – либо (или максимум, или минимум) попадает вовнутрь интервала. В первом случае f (x) = const = M = m. Поэтому производная равна нулю f ' (c) = 0 в любой точке отрезка [a, b], и теорема доказана.

Во втором случае, так как f (x) дифференцируема в точке c, из теоремы Ферма следует, что f ' (c) = 0.

  1. Теорема Лагранжа.

Если функция f(x) непрерывна на замкнутом отрезке [a, b], дифференцируема внутри него, то существует такая точка с Î (a, b), что выполняется равенство

f(b) − f(a) = f '(c)·(b − a).

Д о к а з а т е л ь с т в о. Составим уравнение хорды, проходящей через точки (a, f(a)), (b, f(b))

y = f(a) + Q·(x - a),

где есть угловой коэффициент хорды. Рассмотрим разность ординат функции и хорды

F(x) = f(x) − f(a) − Q·(x − a).

Очевидно, что функция F(x) удовлетворяет всем условиям теоремы Ролля. Поэтому на интервале (a, b) найдётся такая точка с, для которой F ' (c) = 0. То есть F ' (c) = f ' (c) − Q = 0. Откуда следует

.

И, наконец, f(b) − f(a) = f '(c)·(b − a).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]