
- •1.Строение атома. Модель Резерфорда-Бора.
- •2.Уравнение Шредингера. Следствие из решения уравнения Шредингера.
- •3. Периодическая таблица д.И. Менделеева в свете строения атома.
- •4.Изменение радиуса атомов в пределах одного периода и в пределах одной группы по мере роста порядкового номера элементов. Объяснение на основе строения атома.
- •5.Изменение потенциала ионизации в пределах одного периода и в пределах одной по мере роста порядкового номера элементов.
- •6. Заполнение энергетических уровней и подуровней электронами по мере роста порядкового номера элементов. Объяснение на основе квантово-механических законов.
- •7.Химическая связь. Типы связи. Краткая характеристика.
- •8. Ковалентная связь. Условия ее образования.
- •9. Ионная связь. Условие ее образования и хар-ка.
- •10.Координационная и водородная связь.
- •11. Описание ковалентной связи методом валентной связи (вс).
- •12. Описание ковалентной связи методом молекулярной орбитали (мо).
- •13. Основные понятия химической термодинамики Внутренняя энергия и энтальпия.
- •15. Тепловые эффекты химических реакций и фазовых превращений. Закон Гесса. Термохимические расчеты.
- •17. Критерии химического средства в изолированных и в неизолированных системах.
- •18. Химическое равновесие. Константа равновесия. Связь ее с энергией Гиббса.
- •19.Скорость хим. Реакций(гомогенные и гетерогенные).
- •20. Влияние концентрации, давления, температуры на скорость реакции.
- •21. Энергия активации, порядок и молекулярность реакции.
- •22. Стадийность химических реакций. Понятие о лимитирующей стадии.
- •23. Катализаторы. Механизм действия катализаторов при гомогенном и гетерогенном катализе.
- •24. Классификация дисперсных систем по степени дисперсности и по агрегатному состоянию.
- •25.Термодинамика растворени
- •26. Понятие идеальные растворы, активность и коэффициент активности.
- •27. Растворы электролитов. Теория электролитической диссоциации. Степень и константа диссоциации.
- •28. Электролитическая диссоциация воды. Водородный показатель, рН. Кислотно-основные индикаторы.
- •29. Малорастворимые электролиты. Произведение растворимости.
- •30. Гидролиз солей; факторы, влияющие на процесс гидролиза. РН- гидратообразования.
- •31. Коллоиды. Отличительные свойства коллоидных систем.
- •32. Мицелла. Двойной электрический слой.
- •33. Электрохимическое равновесие на межфазовой границе электрод- электролит. Электродный потенциал.
- •34. Гальванический элемент. Связь э.Д.С. С энергией Гиббса.
- •35. Свойства простого вещества.
- •36. Характер связи в металлах.
- •37. Типы кристаллических решеток.
- •38.Термодинамика и кинетика взаимодействия металлов с кислородом.
- •39. Термодинамика и кинетика взаимодействия металлов с хлором
- •40. Термодинамика и кинетика взаимодействия металлов с водой.
- •41. Термодинамика и кинетика взаимодействия металлов с соляной кислотой.
- •42. Термодинамика и кинетика взаимодействия металлов с серной кислотой.
- •43. Термодинамика и кинетика взаимодействия металлов с азотной кислотой.
- •44. Классификация коррозии по типу разрушений и по механизму протекания процессов.
- •45. Термодинамика и кинетика химической и электрохимической коррозии.
- •47.Пассивность металлов
- •48. Методы защиты от коррозии
- •49. Катодная и анодная защита.
- •50. Катодное и анодное покрытия
43. Термодинамика и кинетика взаимодействия металлов с азотной кислотой.
В азотной кислоте в качестве окислителя формально выступает азот в степени окисления +5. Максимальное значение электродного потенциала для нитрат-иона разбавленной кислоты как окислителя =0,96 В. Большее значение потенциала отражает то, что азотная кислота-более сильный окислитель, чем серная. Действительно, она окисляет даже серебро. Восстанавливается кислота тем глубже, чем активнее металл и чем более разбавлена кислота:
H2SO4(окислитель S+6) |
|||
Актив. |
Средн. Акт. |
Малоак. |
|
Реаг |
Реаг, пассив.Ti |
Реаг Cu,Hg, ag |
Нереаг.au,os,ru |
Кислота восстан. В основном до след продк. |
|||
NH4NO3 |
N2, N2O |
NO |
--- |
В большинстве случаев образуются соли азотной кислоты-нитраты. Причем в очень разбавленной азотной кислоте железо окисляется до 2-валентного состояния, хотя обычно получается нитрат железа(3). Олово окисляется до нитрата олова(2).
Концентрированная азотная кислота, в отличие от разбавленной, обычно восстанавливается до диоксида азота:
H2SO4(окислитель S+6) |
|||
Актив. |
Средн. Акт. |
Малоак. |
|
Реаг |
Реаг, реаг и пассив al,Ti,Cr,Fe |
Реаг Cu,Hg, ag |
Нереаг.au,os,ru |
Кислота восстан. В основном до NO2 |
При использовании кислоты в недостатке и без перемешивания реакионной среды активные металлы восстанавливают ее до азота, а металлы средней активности – до монооксида.
44. Классификация коррозии по типу разрушений и по механизму протекания процессов.
Корро́зия (от лат. corrosio — разъедание) — это самопроизвольное разрушение металлов в результате химического или физико-химического взаимодействия с окружающей средой. В общем случае это разрушение любого материала. Причиной коррозии служит термодинамическая неустойчивость конструкционных материалов к воздействию веществ, находящихся в контактирующей с ними среде. По характеру разрушения:
сплошная коррозия, охватывающая всю поверхность:
1)равномерная;
2)неравномерная;
3)избирательная[1];
4)локальная (местная) коррозия, охватывающая отдельные участки:
5)пятнами;
6)язвенная;
7)точечная (появление углублений на поверхности металлов);
сквозная;
8)межкристаллитная (расслаивающая в деформированных заготовках и ножевая в сварных соединениях).
Главная классификация производится по механизму протекания процесса. Различают два вида:
1)химическую коррозию;
2)электрохимическую коррозию.
Электрическая коррозия протекает в средах проводящих электрический ток, что для протекания электрической коррозии необходимо наличие проводящей среды и возможность образования гальвано пары. При электрохимической коррозии (наиболее частая форма коррозии) всегда требуется наличие электролита (Конденсат, дождевая вода и т. д.), с которым соприкасаются электроды — либо различные элементы структуры материала, либо два различных соприкасающихся материала с различающимися окислительно-восстановительными потенциалами. Если в воде растворены ионы солей, кислот, или т. п., электропроводность её повышается, и скорость процесса увеличивается.
Химическая коррозия — взаимодействие поверхности металла с коррозионно-активной средой, не сопровождающееся возникновением электрохимических процессов на границе фаз. В этом случае взаимодействия окисление металла и восстановление окислительного компонента коррозионной среды протекают в одном акте. Например, образование окалины при взаимодействии материалов на основе железа при высокой температуре с кислородом:
4Fe + 3O2 → 2Fe2O3
При электрохимической коррозии ионизация атомов металла и восстановление окислительного компонента коррозионной среды протекают не в одном акте и их скорости зависят от электродного потенциала металла (например, ржавление стали в морской воде).