Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
эл. привод. Косматов.doc
Скачиваний:
158
Добавлен:
27.09.2019
Размер:
172.01 Mб
Скачать

7.2. Переходные процессы в разомкнутых электроприводах

7.2.1. Общие сведения

Переходным процессом электропривода называется режим его работы при переходе из одного установившегося состояния к другому, при этом изменяются координаты электропривода: скорость, токи, момент, магнитный поток двигателя. Это зависимости , , , . Анализ этих зависимостей позволяет определить характер переходного процесса (монотонный или колебательный), время переходного процесса; определить допустимость возникающих в динамических режимах величин момента, ускорения, тока, которые определяют механические и электрические перегрузки в электроприводе; произвести правильный выбор мощности двигателя и аппаратуры управления.

Без переходных процессов не совершается движение ни одного электропривода, в простейшем случае, например, в электроприводе вентилятора, транспортёра, требуется осуществить пуск двигателя. При этом мгновенное подключение напряжения к обмоткам двигателя не приводит к скачкообразному изменению скорости, а осуществляется изменение скорости, тока, момента двигателя во времени. Большому количеству электроприводов механизмов присущи переходные процессы при электрическом торможении двигателя: рекуперативном, противовключением, динамическом.

Переходные процессы возникают при регулировании скорости, когда двигатель переводится с одной скорости на другую, например, изменением сопротивления, напряжения, потока и частоты.

Ряд механизмов, таких как кривошипно-шатунные (механизм качания кристаллизатора, ножницы и т.п.) характеризуются пульсирующем изменением нагрузки на валу двигателя. Такие механизмы не имеют установившегося режима, а их электропривод имеет периодические переходные процессы.

Переходные процессы пуска и торможения могут быть не редкими явлениями, а основными рабочими режимами, например, в электроприводах реверсивных прокатных станов, рабочих рольгангов, механизмов поворота экскаватора и т.д. Эти процессы, а также процессы регулирования скорости возникают регулярно путём воздействия оператора или автоматически в соответствии с технологическим процессом работы механизма. Переходные процессы могут возникать также при набросе и сбросе нагрузки, колебаниях напряжения сети, частоты сети и т.д.

Итак, внешней причиной, вызывающей переходный процесс в электроприводе, являются управляющие и возмущающие воздействия. Управляющие воздействия это напряжение, напряжение и его частота, сопротивление в цепях двигателя, магнитный поток; возмущающие воздействия – изменение момента нагрузки на валу двигателя, момента инерции электропривода, колебания напряжения сети, частоты и т.д. Эти воздействия являются побуждающими электропривод к переходному процессу. Реакция электропривода на управляющее или возмущающее воздействие составляет суть переходных процессов. Внутренней причиной переходных процессов являются инерционности электропривода – механическая и электромагнитная инерционности. Изменение запаса кинетической энергии в механической части электропривода и электромагнитной энергии в электрической части привода происходит постепенно, что и объясняет возникновение переходных процессов.

Все возникающие задачи по исследованию переходных процессов в электроприводах разделяются на четыре больших группы.

1.Преобладающей инерционностью в приводе является механическая инерционность (момент инерции ); электромагнитные инерционности (индуктивность L) малы или не проявляются. Фактор, вызывающий переходный процесс, изменяется скачкообразно (мгновенно), т.е. намного быстрее, чем скорость.

Примеры таких задач: мгновенный наброс и сброс нагрузки, пуск, торможение, реверс, регулирование скорости асинхронных двигателей и двигателей постоянного тока при Ф=const.

2.Преобладающая инерционность – механическая ( ); индуктивности (L) электрических цепей малы или не проявляются. Фактор, вызывающий переходный процесс, изменяется во времени и темп этого изменения соизмерим с темпом изменения скорости.

Примеры таких задач: переходные процессы в системах ТП-Д, ПЧ-АД, если L=0.

3.Механическая ( ) и электромагнитная (L) инерционность соизмеримы; фактор, вызывающий переходный процесс, – изменяется мгновенно.

Примеры: переходные процессы в электроприводах постоянного тока при Ф=var; то же при Ф= const, но L .

4.Учитывается несколько инерционностей, фактор, вызывающий переходный процесс, изменяется не мгновенно. Это наиболее сложные задачи, относящиеся к замкнутым системам электроприводов (изучаются в специальных курсах).