- •Электрический привод
- •Магнитогорск
- •Предисловие
- •Глава первая. Электропривод как система
- •1.1 Определение понятия «электропривод». Блок-схема электропривода
- •1.2 Классификация электроприводов
- •Безредукторный.
- •1.3 Краткая история развития электропривода
- •Глава вторая. Механическая часть силового канала электропривода
- •2.1 Кинематические схемы механической части электропривода. Типовые нагрузки
- •2.2 Расчётные схемы механической части электропривода
- •2.3 Уравнения движения электропривода
- •2.4. Механические переходные процессы электропривода
- •2.5 Механические характеристики двигателей и механизмов в электроприводе
- •2.6. Режимы преобразования энергии в электроприводе и ограничения, накладываемые на их протекание
- •Глава третья. Физические процессы в электроприводах с двигателями постоянного тока независимого (параллельного) возбуждения
- •3.1 Основные уравнения и соотношения для электроприводов с двигателями постоянного тока независимого возбуждения
- •3.1.1. Принцип действия. Основные уравнения
- •3.2 Механические и электромеханические характеристики электропривода с дпт нв
- •3.3 Естественная характеристика эп с дпт нв
- •3.4. Искусственные статические характеристики электропривода с дпт нв
- •3.5 Тормозные режимы работы электропривода с дпт нв
- •1.Тормозной с отдачей энергии в сеть (рекуперативное ) или генераторный режим работы параллельно с сетью
- •2.Торможение противовключением или генераторный режим последовательно с сетью
- •3. Динамическое торможение или генераторное независимо от сети
- •Глава четвёртая. Физические процессы в электроприводах с двигателями последовательного и смешанного возбуждения
- •4.1. Основные уравнения и основные соотношения для электроприводов с двигателями последовательного возбуждения
- •4.2. Особенности статических режимов и характеристик электроприводов с двигателями постоянного тока смешанного возбуждения (дпт св)
- •Глава пятая. Физические процессы в электроприводах с асинхронными и синхронными двигателями
- •5.1. Принцип действия асинхронного электропривода. Схемы включения
- •5.2. Статические электромеханические и механические характеристики асинхронного электропривода
- •5.3. Энергетические показатели асинхронных электроприводов
- •5.4. Тормозные режимы работы асинхронных электроприводов
- •5.5. Электропривод с синхронным и вентильно – индукторным двигателями
- •Глава шестая. Электрическая часть силового канала электропривода
- •6.1. Электромашинные преобразователи электрической энергии. Система г - д
- •6.2. Статические преобразователи электрической энергии в электроприводах постоянного тока
- •6.2.1. Блок схема тиристорного электропривода. Схемы выпрямления
- •6.2.2. Основные характеристики тиристорного преобразователя и системы тп-д
- •6.2.3. Инверторный режим работы тиристорного электропривода
- •6.2.4. Электромеханические и механические характеристики реверсивного тиристорного электропривода
- •6.3. Статические преобразователи частоты и напряжения в электроприводах переменного тока
- •6.3.1. Преобразователи частоты со звеном постоянного тока
- •6.3.2. Асинхронный электропривод на основе пч с аин и управляемым выпрямителем
- •6.3.3. Асинхронный электропривод на основе пч с аин с широтно-импульсной модуляцией
- •6.3.4. Электропривод переменного тока на основе преобразователей частоты с непосредственной связью
- •6.3.5. Механические характеристики электропривода переменного тока с преобразователями частоты
- •Глава седьмая. Принципы управления в электроприводе
- •7.1 Релейно-контакторные системы управления электроприводов
- •7.1.1. Реостатный пуск электроприводов с рксу. Расчёт пусковых диаграмм и сопротивлений
- •7.2. Переходные процессы в разомкнутых электроприводах
- •7.2.1. Общие сведения
- •7.2.2. Переходные процессы в электроприводах с линейными механическими характеристиками при и быстрых изменениях воздействующего фактора
- •7.2.3. Переходные процессы в асинхронном электроприводе с нелинейными механическими характеристиками
- •Глава восьмая. Основы выбора мощности двигателей в электроприводе
- •8.1. Общие сведения
- •8.2. Нагревание и охлаждение двигателей
- •8.3. Допустимые по нагреву режимы работы электродвигателей
- •8.4. Общая методика выбора двигателей
- •8.5. Методы проверки двигателей по нагреву
- •8.5.1. Метод средних потерь
- •8.5.2. Методы эквивалентных величин
- •8.6. Проверка двигателей по нагреву в повторно-кратковременном режиме
- •8.7. Некоторые замечания по выбору двигателей
- •Список литературы
- •Оглавление
Глава первая. Электропривод как система
1.1 Определение понятия «электропривод». Блок-схема электропривода
В настоящее время в промышленности, на транспорте, в сельскохозяйственном производстве, в коммунальной сфере и быту практически 100% механической энергии для работы машин и механизмов получают из электрической энергии за счёт применения электроприводов.
Электропривод – это электромеханическая система, состоящая в общем случае из взаимодействующих электрических преобразователей, электрических машин, механических передач и систем управления, служащих для приведения в движение рабочих машин, преобразования электрической энергии в механическую энергию (или обратно), и управления преобразованной энергией в соответствии с требованиями технологического процесса. Блок-схема электропривода приведена на рис. 1.1.
Рис. 1.1. Блок-схема электропривода
Электропривод состоит из двух каналов: силового и информационного.
Силовой
канал в свою очередь представляется
электрическим и механическим каналами.
В электрическую часть силового канала
входит энергетическая часть системы
управления ЭСУ (электромашинные или
статические преобразователи электрической
энергии) и электромеханический
преобразователь ЭМП (электрические
машины). ЭСУ передаёт и преобразовывает
электрическую энергию от источника
питания (шин промышленной электрической
сети, автономного электрического
генератора, аккумуляторной батареи и
т.п.) к ЭМП и обратно. ЭМП представляется
как идеализированный двигатель, в
котором происходит преобразование
электрической энергии
в электромагнитную
.
Ей соответствует электромагнитный
момент М, прикладываемый к реальному
ротору двигателя РД с механической
инерцией
и механическими
потерями.
Механическая часть силового канала включает в себя все вращающиеся и поступательно движущиеся элементы: ротор двигателя РД, передаточный механизм ПМ (валы, муфты, редукторы, барабаны и т.п.), и исполнительный орган рабочей машины ИМ, в котором полезно реализуется механическая энергия.
Информационная часть системы управления ИСУ, т.е. информационный канал осуществляет управление потоком энергии, а также сбор и обработку сведений о состоянии и функционировании системы, защиту, и диагностику её неисправностей.
Практически все процессы, связанные с механической энергией, движением, осуществляются электроприводом. В относительно небольшом числе промышленных установок используется гидропривод, ещё реже пневмопривод. Столь широкое повсеместное распространение электропривода обусловлено возможностью передачи электрической энергии на любые расстояния, постоянной готовностью к использованию, легкостью преобразования в другие виды энергии.
В настоящее время в приборных системах используются электроприводы, мощность которых составляет единицы микроватт, мощность электроприводов прокатных станов – десятки мегаватт (стан 5000 - привод валков клети потребляет 24 мВт), т.е. диапазон современных электроприводов по мощности превышает 1012. Такого же порядка и диапазон по скорости вращения: от нескольких оборотов в несколько десятков часов в установках вытягивания кристаллов полупроводников при очень жёстких требованиях к равномерности движения, до 150000 об/мин в шлифовальных станках.
С энергетической точки зрения электропривод является главным потребителем электрической энергии, более 60% всей производимой электрической энергии перерабатывается с помощью электропривода.
Электродвигатель является основным обязательным элементом электропривода, осуществляющим электромеханическое преобразование энергии. Электродвигатели различают:
- по роду тока (постоянный, переменный);
- по количеству и схеме соединения обмоток;
- по конструктивному исполнению.
Наиболее распространёнными двигателями являются:
- коллекторные двигатели постоянного тока с независимым (параллельным), последовательным и смешанным возбуждением;
- двигатели переменного тока асинхронные с короткозамкнутым ротором и фазным ротором, синхронные двигатели.
Преобразователи электрической энергии, входящие в ЭСУ, осуществляют преобразование параметров электрической энергии в электрическую же энергию, однако с другими параметрами:
-
энергию переменного тока с параметрами
,
,
в энергию постоянного тока с параметрами
,
;
- энергию переменного тока с параметрами , , в энергию переменного тока с параметрами , .
Преобразователи
электрической энергии необходимы для
создания требуемого управляющего
воздействия на координаты электропривода:
напряжение, напряжение и частота, ток,
момент, скорость, угол поворота вала
двигателя, рабочего органа механизма.
Управление координатами должно
осуществляться в пределах, разрешённых
конструкцией элементов электропривода,
чем обеспечивается надёжность работы
системы. Эти допустимые пределы обычно
связаны с номинальными значениями
координат, назначенными производителями
оборудования и обеспечивающими его
оптимальное использование. В системе
электропривода при управлении координатами
(потоком энергии) должны минимизироваться
потери
во всех элементах
и к рабочему органу должна подводиться
требуемая в данный момент мощность.
Свойства и характеристики различных электроприводов, правильное управление их координатами в установившихся (статических) и переходных (динамических) режимах, оценка энергетических свойств, и, наконец, правильное проектирование силовой части электропривода и является предметом изучения данной дисциплины.
