Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Otvety_po_vysshey_matematike_na_voprosy.docx
Скачиваний:
15
Добавлен:
27.09.2019
Размер:
753.58 Кб
Скачать

Свойства сохранения порядка

  • Если все элементы сходящейся последовательности, начиная с некоторого номера, не превышают некоторого числа, то и предел этой последовательности также не превышает этого числа.

  • Если некоторое число не превышает все элементы сходящейся последовательности, начиная с некоторого номера, то оно также не превышает и предела этой последовательности.

  • Если некоторое число строго превышает все элементы сходящейся последовательности, начиная с некоторого номера, то предел этой последовательности не превышает этого числа.

  • Если все элементы сходящейся последовательности, начиная с некоторого номера, строго превышают некоторое число, то это число не превышает предела этой последовательности.

  • Если, начиная с некоторого номера, все элементы одной сходящейся последовательности не превышают соответствующих элементов другой сходящейся последовательности, то и предел первой последовательности не превышает предела второй.

  • Для числовых последовательностей справедлива теорема о двух милиционерах (принцип двустороннего ограничения).

Другие свойства

  • Сходящаяся числовая последовательность имеет только один предел.

  • Замкнутость. Если все элементы сходящейся числовой последовательности лежат на некотором отрезке, то на этом же отрезке лежит и её предел.

  • Предел последовательности из одного и того же числа равен этому числу.

  • Замена или удаление конечного числа элементов в сходящейся числовой последовательности не влияет на её предел.

  • У возрастающей ограниченной сверху последовательности есть предел. То же верно для убывающей ограниченной снизу последовательности.

  • Имеет место теорема Штольца.

  • Если у последовательности существует предел, то последовательность средних арифметических имеет тот же предел (следствие из теоремы Штольца).

  • Если у последовательности чисел существует предел , и если задана функция , определенная для каждого и непрерывная в точке , то

24 Вопрос

Сходящиеся последовательности и их свойства. Определение. Последовательность {xn} называется сходящейся, если существует такое вещественное число а, что последовательность {xn−a} является бесконечно малой. Если последовательность {xn→a } является сходящейся и имеет своим пределом число a, то символически это записывают так:limn→∞xn=a или xn→a  при n→∞  Определение. Последовательность {xn} называется сходящейся, если существует такое вещественное число a, что для любого положительного вещественного числа ε найдется номер N(ε) такой, что при всех n>Nэлементы xn этой последовательности удовлетворяют неравенству ∣xn−a∣<ε  При этом число a называется пределом последовательности. Неравенство (5) можно записать в эквивалентной форме −ε<xn−a<+ε  или, a−ε<xn<a+ε . (5') Определение. Последовательность {xn} называется сходящейся, если существует такое число a, что в любой ε-окрестности точки aнаходятся все элементы последовательности {xn} начиная с некоторого номера (зависящего от ε). Теорема 1. Сходящаяся последовательность имеет только один предел. Доказательство. Предположим, что два вещественных числа а и b являются пределами сходящейся последовательности {xn}. xn=a+an и xn=b+bn, где {an} и {bn} - некоторые бесконечно малые последовательности. Получим an−bn=b−a . Последовательность {an−bn}  является бесконечно малой, а в силу равенства an−bn=b−a  все элементы этой бесконечно малой последовательности равны одному и тому же вещественному числуb−a . Число b−a  равно нулю, т. е. b=a. Теорема доказана.

Теорема 2. Всякая сходящаяся последовательность является ограниченной.

Доказательство. Пусть {xn} - сходящаяся последовательность и a ее предел. Фиксируем некоторое положительное число ε и по нему номер N такой, что ∣xn−a∣<ε  при n≥N  или, a−ε<xn<a+ε при n≥N . Обозначим через A наибольшее из следующих (N+1) чисел: ∣a−ε∣,∣a+ε∣,∣∣x1∣∣,∣∣x2∣∣,...,∣∣хN−1∣∣ . Тогда, очевидно, ∣xn∣≤A  для всех номеров n, а это и доказывает ограниченность последовательности {xn}. Теорема доказана.

Следствие 1. Не всякая ограниченная последовательность является сходящейся. Так, например, посл. 0,1,0,1,...,0,1, ... является ограниченной, но не является сходящейся. В самом деле, обозначим n-й член этой последовательности символом xn и предположим, что эта последовательность сходится к некоторому пределу a. Но тогда каждая из последовательностей {xn+1−a}  и {xn−a}  являлась бы бесконечно малой. Стало быть, являлась бы бесконечно малой и разность этих последовательностей {xn+1−xn}  а этого быть не может в силу того, что ∣∣xn+1−xn∣∣=1  для всех номеров n. Последовательность {an} называется бесконечно малой, если для любого положительного вещественного числа ε найдется номер N(ε) такой, что при всех n>Nэлемент an последовательности удовлетворяет неравенству ∣an∣<ε .

Теорема 3. Сумма сходящихся последовательностей {xn} и {yn} представляет собой сходящуюся последовательность, предел которой равен сумме пределов последовательностей {xn} и {yn}. Доказательство. Предположим, что последовательности {xn} и {yn} сходятся к пределам а и b соответственно. Тогда в силу того что xn=a+an будут справедливы соотношения xn=a+an,yn=b+bn, (6), в которых anи bn представляют собой элементы некоторых бесконечно малых последовательностей {an} и {bn}. Из (6) вытекает, что(xn+yn)−(a−b)=an+bn . (7) Т.к. сумма {an+bn} двух бесконечно малых последовательностей {an} и {bn} представляет собой бесконечно малую последовательность, то из соотношения (7) вытекает в силу определения, что последовательность {xn+yn} сходится и вещественное число a+b является ее пределом. Теорема доказана.

Теорема 4. Разность сходящихся последовательностей {xn} и {yn} представляет собой сходящуюся последовательность, предел которой равен разности пределов последовательностей {xn} и {yn} Доказательство этой теоремы аналогично доказательству Теоремы 3, только вместо соотношения (7) мы получим соотношение (xn−yn)−(a−b)=an−bn .

Теорема 5. Произведение сходящихся последовательностей {xn} и {yn} представляет собой сходящуюся последовательность, предел которой равен произведению пределов последовательностей {xn} и {yn}. Доказательство. Предположим, что последовательности {xn} и {yn}сходятся к пределам a и b соответственно. Тогда для элементов этих последовательностей справедливы (6), перемножая которые, мы получим xn·yn=a·b+abn+ban+an·bn или, xnyn−a·b=abn+ban+an·bn  (8) Лемма 1. Если последовательность {yn} сходится к отличному от нуля пределу b, то, начиная с некоторого номера, определено частное {1yn}  последовательностей {\{}1{\}} и {yn}, которое представляет собой ограниченную последовательность.

Теорема 6. Частное двух сходящихся последовательностей {xn} и {yn}, предел второй из которых отличен от нуля, определено, начиная с некоторого номера, и представляет собой сходящуюся последовательность, предел которой равен частному пределов последовательностей {xn} и {yn}. Доказательство. Предположим, что последовательности {xn} и {yn} сходятся к пределам a и b соответственно. В силу леммы 1 найдется номер N такой, что при n>N элементы yn нe обращаются в нуль, определена последовательность {1yn} и эта последовательность является ограниченной. Начиная с номера N, мы и будем рассматривать частное {ynxn} . В силу определения достаточно доказать, что последовательность {ynxn−ba}  является бесконечно малой. Будем исходить из тождества ynxn−ba=yn·bxn·b−yn·a  (9) Т.к. для элементов xn и yn справедливы (6), то

n·b−yn·a=(a+an)·bn−(b+bn)·an=anb−bna 

Подставляя (10) в (9), получим ynxn−ba=1yn(an−babn)  (11) Остается доказать, что в правой части (11) стоит элемент бесконечно малой последовательности, но это сразу вытекает из того, что последовательность {1yn}  (в силу леммы 1) является ограниченной, а последовательность {an−babn}  (как разность двух бесконечно малых) является бесконечно малой последовательностью. Теорема доказана.

25 вопрос

Монотонная последовательность — это последовательность, элементы которой с увеличением номера не убывают, или, наоборот, не возрастают. Подобные последовательности часто встречаются при исследованиях и имеют ряд отличительных особенностей и дополнительных свойств. Последовательность из одного числа не может считаться возрастающей или убывающей. Определения

Пусть имеется множество , на котором введено отношение порядка.

Последовательность элементов множества называется неубывающей, если каждый элемент этой последовательности не превосходит следующего за ним.

— неубывающая

Последовательность элементов множества называется невозрастающей, если каждый следующий элемент этой последовательности не превосходит предыдущего.

— невозрастающая

Последовательность элементов множества называется возрастающей, если каждый следующий элемент этой последовательности превышает предыдущий.

— возрастающая

Последовательность элементов множества называется убывающей, если каждый элемент этой последовательности превышает следующий за ним.

— убывающая

Последовательность называется монотонной, если она является неубывающей, либо невозрастающей.[1]

Последовательность называется строго монотонной, если она является возрастающей, либо убывающей.

Очевидно, что строго монотонная последовательность является монотонной.

Иногда используется вариант терминологии, в котором термин «возрастающая последовательность» рассматривается в качестве синонима термина «неубывающая последовательность», а термин «убывающая последовательность» — в качестве синонима термина «невозрастающая последовательность». В таком случае возрастающие и убывающие последовательности из вышеприведённого определения называются «строго возрастающими» и «строго убывающими», соответственно.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]