
- •Список экзаменационных вопросов по курсу «Схемотехника эвм», 4-й семестр. 2012 г.
- •Задачи анализа и задачи синтеза в деятельности инженера-схемотехника: их особенности и различия.
- •Основные физические величины, используемые при описании электромагнитных устройств: что характеризуют эти величины.
- •Как свойство накопления энергии в магнитном поле влияет на характеристики цифровых устройств?
- •Источники электрической энергии: для чего они нужны в электронных информационных устройствах? Каково основное отличие вольт-амперной характеристики источника электрической энергии?
- •Системные законы (уравнения) в математической модели цепи. Что они характеризуют? Назовите основные системные законы, позволяющие описывать процессы в электрической цепи.
- •Что называют сигналом в электронных информационных устройствах? Каков общий принцип отображения данных (информации) в сигнале?
- •Чем определяется точность при переходе к цифровому способу отображения информации в сигнале.
- •Каково может быть влияние на логический сигнал резистора, подключенного между выходом логического элемента и одним из выводов источника питания? Чем определяется сила этого влияния?
- •Что такое – свойство функциональной полноты системы логических функций. Какие совокупности логических функций обладают свойством функциональной полноты.
- •Теорема де Моргана и дуальные изображения логического элемента с несколькими входами. Для чего могут быть полезны дуальные изображения лэ?
- •Как могут быть построены электронные логические устройства, реализующие логические функции двух и более аргументов?
- •В чем состоит основное преимущество комплементарной схемотехники логических элементов с точки зрения энергоэффективности и в отношении динамических свойств (скорости переключения)?
- •Каковы основные характеристики, используемые для оценки динамических свойств лэ?
- •Что такое «многоразрядный логический вентиль» и для какой цели он используется?
- •Как можно реализовать любую из логических функций двух аргументов, а) используя только двухвходовый элемент и-не; б) используя только двухвходовый элемент или-не?
- •Что называют логической глубиной комбинационной схемы. Оцените логическую глубину для заданной вам логической схемы.
- •Каков обычный порядок проектирования цифрового устройства? Какими могут быть критерии минимизации, выполняемые при проектировании?
- •Проектирование произвольной логики комбинационного типа производится по этапам.
- •Каким способом можно наращивать разрядность дешифратора? Опишите схемотехнические приемы, укажите, каким требованиям должны удовлетворять используемые при этом малоразрядные дешифраторы.
- •Приоритетный шифратор вырабатывает на выходе двоичный номер старшего запроса.
- •Воздействие временной задержки в логическом элементе при инвертировании сигнала а
- •Для чего используется импульсное устройство, называемое «триггером Шмитта»? Каков принцип функционирования триггера Шмитта?
- •Простой rs-триггер на элементах или-не: схема, принцип функционирования, таблица изменения состояний. Дуальная конфигурация rs-триггера на элементах и-не.
- •Условное графическое обозначение асинхронного rs-триггера
- •Триггеры типа crs (с управляемой записью): принцип функционирования, таблица изменения состояний, временные диаграммы, иллюстрирующие работу. Варианты crs-триггеров на элементах разного типа.
- •Триггер, управляемый перепадом синхросигнала: принцип функционирования, таблица изменения состояний, временные диаграммы, основное отличие от более простых триггерных цепей.
- •Двухступенчатый триггер: структурные особенности построения, принцип функционирования, таблица изменения состояний, временные диаграммы, основное отличие от более простых триггерных цепей.
- •Регистры для хранения данных: назначение, принципы построения, разновидности, особенности использования.
- •Сдвиговые регистры: их основные применения, принципы организации, особенности функционирования.
- •Счетный триггер: особенности построения, принцип функционирования, таблица изменения состояний, временные диаграммы, основное назначение счетного триггера.
- •Способы ускорения переноса в счетчике. Счетчик со сквозным переносом. Связь между задержкой переключения разряда и максимальной частотой счета.
- •Организация счетчика с модулем пересчета, отличным от 2n. Для чего может понадобиться изменять модуль пересчета в ходе работы устройства, как это можно сделать?
Что называют сигналом в электронных информационных устройствах? Каков общий принцип отображения данных (информации) в сигнале?
Данные ‑ результат фиксации, отображения информации на каком-либо материальном носителе, в виде состояния (формы) этого носителя. При этом предполагается возможность хотя бы однократного изменения этого состояния. Сигнал ‑ изменяющийся во времени физический процесс, изменение параметров которого несёт информацию к получателю. Материальный носитель информации, используемый для передачи сообщений в системе связи. Сигнал может генерироваться, но его приём не обязателен, в отличие от сообщения, которое должно быть принято принимающей стороной, иначе оно не является сообщением. Сигналом может быть любой физический процесс, параметры которого изменяются в соответствии с передаваемым сообщением. Сигнал, детерминированный или случайный, описывают математической моделью, функцией, характеризующей изменение параметров сигнала. Математическая модель представления сигнала, как функции времени, является основополагающей концепцией теоретической радиотехники, оказавшейся плодотворной как для анализа, так и для синтеза радиотехнических устройств и систем. В радиотехнике альтернативой сигналу, который несёт полезную информацию, является шум — обычно случайная функция времени, взаимодействующая (например, путём сложения) с сигналом и искажающая его. Основной задачей теоретической радиотехники является извлечение полезной информации из сигнала с обязательным учётом шума. данные — это часть программы, совокупность значений определённых ячеек памяти, преобразование которых осуществляет код. Данные, являющиеся результатом фиксации некоторой информации, сами могут выступать как источник информации. Информация, извлекаемая из данных, может подвергаться обработке, и результаты обработки фиксируются в виде новых данных.С точки зрения компилятора, процессора, операционной системы, это совокупность ячеек памяти, обладающих определёнными свойствами (возможность чтения и записи (необяз.), невозможность исполнения). Контроль за доступом к данным в современных компьютерах осуществляется аппаратно. В электротехническом (в электронном) слэнге «параметрами» называют переменные во времени величины, характеризующие протекание физического процесса.
В чем различие между аналоговым и цифровым способами отображения данных (информации) в сигнале. Какие действия с аналоговым сигналом следует выполнить, чтобы перейти к цифровому способу отображения. Что такое «дискретизация» и «квантование».
Большинство сигналов имеют аналоговую природу, то есть изменяются непрерывно во времени и могут принимать любые значения на некотором интервале. Аналоговые сигналы можно описать непрерывной математической функцией времени. Аналоговые сигналы используются в телефонии, радиовещании, телевидении. Неприятная особенность аналогового сигнала состоит в том, что внешние влияния способны изменить величину сигнала, причем невозможно полностью исключить эти изменения, можно лишь пытаться их уменьшать. Поэтому при использовании аналогового сигнала возникают ошибки, которые при выполнении операций с сигналом в среднем лишь увеличиваются. И принципиально не существует возможности ограничить рост ошибки с усложнением алгоритма обработки аналогового сигнала. Аналоговый сигнал на любом интервале времени имеет бесконечное множество значений, а для точного представления его значения требуются числа бесконечной разрядности. Для обработки с помощью цифрового компьютера необходимо преобразовать аналоговый сигнал так, чтобы можно было представить его последовательностью чисел заданной разрядности. Дискретизация аналогового сигнала состоит в том, что сигнал представляется в виде последовательности значений, взятых в дискретные моменты времени. При квантовании вся область значений, которые может принимать сигнал, разбивается на малые интервалы. Расстояние между границами интервалов называется шагом квантования Δ. Число этих уровней равно N (от 0 до N-1). Каждому интервалу ставится в соответствие число. Отсчет сигнала сравнивается с границами интервалов квантования и затем изображается числом, соответствующим интервалу, в который этот отсчет попал. Цифровой сигнал. Для того чтобы представить аналоговый сигнал последовательностью чисел конечной разрядности, его следует сначала превратить в дискретный сигнал, а затем подвергнуть квантованию. В результате сигнал будет представлен таким образом, что на каждом заданном промежутке времени известно приближённое значение сигнала, которое можно записать целым числом. Если записать эти целые числа в двоичной системе, получится последовательность нулей и единиц, которая и будет являться цифровым сигналом. Можно использовать и системы счисления с основанием, отличным от 2. Именно эти операции (дискретизацию и квантование) выполняют технические устройства в ходе технических измерений.