
- •1. Радиоэл-ка как обл-ть науки и техники. Осн напр-я соврем радиоэ-ки;
- •4. Активные компоненты радиоэлектроники. Полупроводниковые электронные приборы. Интегральные микросхемы;
- •6. Собственная электропроводность полупроводниковых материалов.
- •7. Типы электрических переходов. Равновесное состояние p-n перехода. Контактная разность потенциалов.
- •8. Прямое смещение p-n перехода.
- •9. Вольтамперная характеристика (вах) p-n перехода. Основные свойства p-n перехода.
- •10Устройство и классификация полупроводниковых диодов. Система условных обозначений диодов;
- •11.Выпрямительные диоды и стабилитроныВыпрямительные диоды
- •12.Варикапы и диоды с барьером Шоттки
- •13.Импульсные диоды и диоды с накоплением заряда (днз) Импульсные диоды этот диод, имеющий малую длительность перех проц-в и предназн для работы в импульсных устройствах.
- •Параметры импульсных диодов
- •Диоды с накоплением заряда
- •14.Туннельные и обращенные диоды
- •15. Определение, устройство и классификация биполярных транзисторов. Система обозначений транзисторов;
- •19. Режимы работы и схемы включения биполярного транзистора
- •20. Принцип действия транзистора
- •Токи в транзисторе ток эмиттера имеет две составляющие: электронную и дырочную
- •21. Формальная модель биполярного транзистора. Система h-параметров биполярного транзистора
- •22. Статические вольтамперные характеристики биполярного транзистора. Влияние температуры на вах биполярного транзистора
- •23. Дифференциальные параметры биполярного транзистора. Определение h-параметров транзистора по статическим вах
- •Определение h–параметров по статическим характеристикам
- •24.Моделирование биполярного транзистора в режиме большого сигнала;
- •25.Малосигнальная модель биполярного транзистора;
- •26 Частотные свойства биполярного транзисторов
- •27 Физические параметры биполярного транзистора. Эквивалентные схемы замещения биполярного транзистора.
- •28.Основные параметры биполярного транзистора;
- •29. Классификация сигналов. Гармонический анализ сигналов
- •30. Спектральный анализ периодических сигналов. Комплексная форма ряда Фурье
- •31. Спектральный анализ непериодических сигналов
- •32. Амплитудно-модулированные сигналы
- •33. Частотно-модулированные сигналы
- •34. Фазомодулированные сигналы
- •35. Случайные сигналы
- •36. Моментные функции второго порядка;
- •37)Спектральный анализ случайных сигналов. Помехи
- •38. Характеристики линейных цепей. Комплексный коэффициент передачи;
- •39. Амплитудно-частотная характеристика.
- •40. Переходная характеристика;
- •41. Импульсная характеристика;
- •42. Методы исследования линейных электрических цепей;
- •43. Классификация аналоговых электронных устройств.
- •Классификация аналоговых электронных устройств
- •44. Основные параметры аналоговых электронных устройств;
- •45. Основные характеристики аналоговых электронных устройств;
- •46. Классификация усилительных устройств;
- •47. Понятие рабочей точки;
- •48. Способы задания рабочей точки;
- •49. Способы стабилизации рабочей точки;
- •50. Основные режимы работы усилительных каскадов;
- •51. Обратные связи в усилительных каскадах;
- •52. Усилительный каскад по схеме с общим эмиттером;
- •Эквивалентная схема усилительного каскада в диапазоне средних частот
- •53. Усилительный каскад по схеме с общей базой;
- •54. Усилительный каскакаскад по схеме с общим коллектором;
- •55.Усилительный каскад с ои
- •56.Усилительный каскад с общим стоком (истоковый повторитель)
- •57. Двухтактный усилительный каскад
- •58. Резонансный усилитель
- •59. Усилители постоянного тока (упт)
- •60.Дифференц усил каскад
- •61. Операционные усилители
- •62. Понятие автоколебат с-мы. Принцип возникновения колебаний.
- •63. Основные теории процессов в автогенераторе;(без линейной теории)
- •64. Основные схемы lc-генераторов;
- •65. Трехточечные схемы генераторов. Кварцевые генераторы;
- •67. Режимы работы автогенератора. Автоген-ры с автоматич смещением.
- •1 .10.1. Однокаскадная схема rc-генератора
- •1.10.2. Двухкаскадная схема -генератора rc
- •69. Модуляция электрических сигналов;
- •70. Амплитудные модуляторы;
- •71. Частотные модуляторы;
- •72. Фазовые модуляторы;
- •73. Детектирование электрических сигналов;
- •74. Амплитудные детекторы
- •Основные хар-ки и параметры амплитуд. Детектора(из инета).
- •75. Фазовые детекторы;
- •76. Частотные детекторы
- •77. Электронные ключевые схемы. Электронные ключи на биполярных транзисторах;
- •78. Способы повышения быстродействия ключей на биполярных транзисторах;
- •79. Электронные ключи на полевых транзисторах
- •80. Алгебра логики и ее основные законы(дописать)
- •81. Диодно-транзисторная логика (дтл);
- •82. Транзисторно-транзисторная логика (ттл);
- •83. Эмиттерно-связанная логика (эсл);
- •84. Интегральная инжекционная логика.
- •86. Основные параметры цифровых интегральных схем;
- •87. Система обозначений цифровых интегральных схем;
- •88. Триггеры.
- •Параметры триггеров
25.Малосигнальная модель биполярного транзистора;
Представление транзистора в виде активного четырехполюсника для расчета схем имеет ряд недостатков:
– параметры четырехполюсника задаются в известной степени формально;
– каждый из параметров может отражать влияние сразу нескольких физических процессов.
Поэтому схемы замещения транзистора (рис. 3.14 – 3.17) в системах Z–, Y–, H– параметров называют формальными схемами замещения. Они неполностью отражают все физические процессы, происходящие в транзисторе.
На практике используются физические эквивалентные схемы замещения транзистора, учитывающие схему включения и частотный диапазон его работы. Каждый вывод физической схемы соответствует электроду транзистора, а в формальных эквивалентных схемах различают только входные и выходные зажимы, независимо от того, какими электродами транзистора они являются.
При работе в активном режиме и небольших изменениях напряжения на эмиттерном переходе транзистор можно представить с помощью линейной эквивалентной схемы, которую называют малосигнальной моделью транзистора.
Малосигнальными такие схемы называют потому, что значения напряжений и токов переменного сигнала обычно значительно меньше, чем значения постоянных токов и напряжений.
Широкое распространение получила T–образная малосигнальная модель транзистора (рис. 3.20), элементы которой достаточно полно отражают свойства реального транзистора на низких частотах.
Параметры эквивалентной схемы rэ, rб, rк отображают реальные сопротивления транзистора и определяются как отношения приращений напряжений в цепях транзистора к вызвавшим их приращениям токов (на низких частотах такие приращения играют роль переменных сигналов).
Согласно эквивалентной схемы (рис. 3.20) получаем:
и составляет единицы–десятки Ом,
и
составляет сотни кОм.
Сопротивление
базы rб
имеет две составляющие: распределенное
сопротивление базы r'б,
диффузионное сопротивление r''б.
Распределенное сопротивление базы r'б
представляет собой область базы, через
которую происходит перенос носителей.
С уменьшением толщины базы r'б
возрастает. Диффузионное сопротивление
базы r''б
учитывает эффект Эрли, заключающийся
во влиянии коллекторного напряжения
на ширину базы за счет изменения ширины
коллекторного перехода. Генератор тока
в цепи коллектора отражает усилительные
свойства транзистора. При этом значение
тока генератора пропорционально току
эмиттера, а с ростом частоты изменяются
как амплитуда, так и фаза тока. Если для
оценки усилительных свойств транзистора
используется генератор напряжения
(рис. 3.20,б), то сопротивление генератора
.
Эмиттерный
и коллекторный переходы обладают
емкостными свойствами, поэтому в
эквивалентных схемах необходимо
учитывать
и
.
Так как эмиттерный переход в активном
режиме смещен в прямом направлении rэ
шунтируется
.
Учитывая, что rэ
очень мало, то влияние
незначительно и на низких частотах им
можно пренебречь. Обратно смещенный
коллекторный переход обладает большим
сопротивлением
,
поэтому влияние
может сказываться и на низких частотах.