
- •1. Радиоэл-ка как обл-ть науки и техники. Осн напр-я соврем радиоэ-ки;
- •4. Активные компоненты радиоэлектроники. Полупроводниковые электронные приборы. Интегральные микросхемы;
- •6. Собственная электропроводность полупроводниковых материалов.
- •7. Типы электрических переходов. Равновесное состояние p-n перехода. Контактная разность потенциалов.
- •8. Прямое смещение p-n перехода.
- •9. Вольтамперная характеристика (вах) p-n перехода. Основные свойства p-n перехода.
- •10Устройство и классификация полупроводниковых диодов. Система условных обозначений диодов;
- •11.Выпрямительные диоды и стабилитроныВыпрямительные диоды
- •12.Варикапы и диоды с барьером Шоттки
- •13.Импульсные диоды и диоды с накоплением заряда (днз) Импульсные диоды этот диод, имеющий малую длительность перех проц-в и предназн для работы в импульсных устройствах.
- •Параметры импульсных диодов
- •Диоды с накоплением заряда
- •14.Туннельные и обращенные диоды
- •15. Определение, устройство и классификация биполярных транзисторов. Система обозначений транзисторов;
- •19. Режимы работы и схемы включения биполярного транзистора
- •20. Принцип действия транзистора
- •Токи в транзисторе ток эмиттера имеет две составляющие: электронную и дырочную
- •21. Формальная модель биполярного транзистора. Система h-параметров биполярного транзистора
- •22. Статические вольтамперные характеристики биполярного транзистора. Влияние температуры на вах биполярного транзистора
- •23. Дифференциальные параметры биполярного транзистора. Определение h-параметров транзистора по статическим вах
- •Определение h–параметров по статическим характеристикам
- •24.Моделирование биполярного транзистора в режиме большого сигнала;
- •25.Малосигнальная модель биполярного транзистора;
- •26 Частотные свойства биполярного транзисторов
- •27 Физические параметры биполярного транзистора. Эквивалентные схемы замещения биполярного транзистора.
- •28.Основные параметры биполярного транзистора;
- •29. Классификация сигналов. Гармонический анализ сигналов
- •30. Спектральный анализ периодических сигналов. Комплексная форма ряда Фурье
- •31. Спектральный анализ непериодических сигналов
- •32. Амплитудно-модулированные сигналы
- •33. Частотно-модулированные сигналы
- •34. Фазомодулированные сигналы
- •35. Случайные сигналы
- •36. Моментные функции второго порядка;
- •37)Спектральный анализ случайных сигналов. Помехи
- •38. Характеристики линейных цепей. Комплексный коэффициент передачи;
- •39. Амплитудно-частотная характеристика.
- •40. Переходная характеристика;
- •41. Импульсная характеристика;
- •42. Методы исследования линейных электрических цепей;
- •43. Классификация аналоговых электронных устройств.
- •Классификация аналоговых электронных устройств
- •44. Основные параметры аналоговых электронных устройств;
- •45. Основные характеристики аналоговых электронных устройств;
- •46. Классификация усилительных устройств;
- •47. Понятие рабочей точки;
- •48. Способы задания рабочей точки;
- •49. Способы стабилизации рабочей точки;
- •50. Основные режимы работы усилительных каскадов;
- •51. Обратные связи в усилительных каскадах;
- •52. Усилительный каскад по схеме с общим эмиттером;
- •Эквивалентная схема усилительного каскада в диапазоне средних частот
- •53. Усилительный каскад по схеме с общей базой;
- •54. Усилительный каскакаскад по схеме с общим коллектором;
- •55.Усилительный каскад с ои
- •56.Усилительный каскад с общим стоком (истоковый повторитель)
- •57. Двухтактный усилительный каскад
- •58. Резонансный усилитель
- •59. Усилители постоянного тока (упт)
- •60.Дифференц усил каскад
- •61. Операционные усилители
- •62. Понятие автоколебат с-мы. Принцип возникновения колебаний.
- •63. Основные теории процессов в автогенераторе;(без линейной теории)
- •64. Основные схемы lc-генераторов;
- •65. Трехточечные схемы генераторов. Кварцевые генераторы;
- •67. Режимы работы автогенератора. Автоген-ры с автоматич смещением.
- •1 .10.1. Однокаскадная схема rc-генератора
- •1.10.2. Двухкаскадная схема -генератора rc
- •69. Модуляция электрических сигналов;
- •70. Амплитудные модуляторы;
- •71. Частотные модуляторы;
- •72. Фазовые модуляторы;
- •73. Детектирование электрических сигналов;
- •74. Амплитудные детекторы
- •Основные хар-ки и параметры амплитуд. Детектора(из инета).
- •75. Фазовые детекторы;
- •76. Частотные детекторы
- •77. Электронные ключевые схемы. Электронные ключи на биполярных транзисторах;
- •78. Способы повышения быстродействия ключей на биполярных транзисторах;
- •79. Электронные ключи на полевых транзисторах
- •80. Алгебра логики и ее основные законы(дописать)
- •81. Диодно-транзисторная логика (дтл);
- •82. Транзисторно-транзисторная логика (ттл);
- •83. Эмиттерно-связанная логика (эсл);
- •84. Интегральная инжекционная логика.
- •86. Основные параметры цифровых интегральных схем;
- •87. Система обозначений цифровых интегральных схем;
- •88. Триггеры.
- •Параметры триггеров
23. Дифференциальные параметры биполярного транзистора. Определение h-параметров транзистора по статическим вах
Статические характеристики и их семейства наглядно связывают постоянные токи электродов с постоянными напряжениями на них: Однако часто возникает задача установить количественные связи между небольшими изменениями (дифференциалами) этих величин от их исходных значений. Эти связи характеризуют коэффициентами пропорциональности – дифференциальными параметрами.
При рассмотрении статических характеристик мы попутно ввели определения и названия h-параметрам, которые можно найти по этим характеристикам (коэффициент передачи входного тока h21, коэффициент обратной передачи h12, выходная проводимость h22 и входное сопротивление h11). Названия и обозначения этих параметров взяты из теории четырехполюсников для переменного тока. Приращения статических величин в нашем случав имитируют переменные токи и напряжения.
Рассмотрим процедуру введения дифференциальных параметров БТ на примере наиболее распространенных h-параметров, приводимых в справочниках по транзисторам. Для введения этой системы параметров в качестве независимых переменных при описании статического режима берут входной ток IВХ (IЭ или IБ) и выходное напряжение UВЫХ (UКБ или UКЭ):
UВХ = f1(IВХ,UВЫХ) (5.49)
IВЫХ = f2(IВХ,UВЫХ)
В этом случае полные дифференциалы:
dUВХ = (∂f1/∂IВХ)dIВХ + (∂f1/∂UВЫХ)dUВЫХ (5.50)
dIВЫХ = (∂f2/∂IВХ)dIВХ + (∂f2/∂UВЫХ)dUВЫХ
Частные производные в выражениях (5.50) и являются дифференциальными h-параметрами, т.е.
dUВХ = h11dIВХ + h12dUВЫХ (5.51)
dIВЫХ = h21dIВХ + h22dUВЫХ
Для схемы с общей базой
dUЭБ = h11БdIЭ + h12БdUКБ (5.52)
dIК = h21БdIЭ + h22БdUКБ
Эти уравнения устанавливают и способ нахождения по статическим характеристикам, и метод измерения h-параметров. Полагая dUКБ = 0, т.е. UКБ = const, можно найти h11Б и h21Б, а считая dIЭ = 0, т.е. IЭ = const, определить h12Б и h22Б.
Аналогично для схемы с общим эмиттером можно переписать (5.51) в виде
dUБЭ = h11ЭdIБ + h12ЭdUКЭ (5.53)
dIК = h21ЭdIБ + h22ЭdUКЭ
Кроме системы h-параметров широко используются система y-параметров и система z-параметров. В системе y-параметров за независимые переменные взяты напряжения, а токи являются их функциями. Потому вместо (5.49) следует писать
IВХ = f1(UВХ,UВЫХ) (5.54)
IВЫХ = f2(UВХ,UВЫХ)
В этом случае, повторяя прежние операции, получаем выражения
dIВХ = (∂f1/∂UВХ)dUВХ + (∂f1/∂UВЫХ)dUВЫХ
dIВЫХ = (∂f2/∂UВХ)dUВХ + (∂f2/∂UВЫХ)dUВЫХ
Заменяя частные производные последовательно на у11, у12, у21, у22, получим
dIВХ = y11dUВХ + y12dUВЫХ (5.55)
dIВЫХ = y21dUВХ + y22dUВЫХ
В системе z-параметров независимыми переменными являются и, а функциями – и. Очевидно, что
dUВХ = z11dIВХ + z12dIВЫХ (5.56)
dUВЫХ = z21dIВХ + z22dIВЫХ