
- •Буквенные индексы
- •Ниже приводится полный список предопределенных переменных Mathcad и их значений по умолчанию:
- •Используемые числа
- •Специальные операции над комплексными числами
- •Многозначные функции
- •Создание вектора
- •Создание матрицы
- •Изменение размера матрицы
- •Нижние индексы и элементы вектора
- •Изменение способа отображения массивов
- •Графическое представление матриц
- •Ограничение входных массивов
- •Ограничение отображаемых массивов
- •Ограничение размеров массива
- •Размеры и диапазон значений массива
- •Специальные типы матриц
- •Специальные характеристики матрицы
- •Формирование новых матриц из существующих
- •Собственные значения и собственные векторы
- •Разложения
- •Решение линейной системы уравнений
- •Определение составного массива
- •Отображение составных массивов
- •Операторы и функции для составных массивов
- •Определение и использование дискретного аргумента
- •Многократные вычисления по дискретному аргументу
- •Множественные дискретные аргументы и двойные индексы
- •Рекурсивные вычисления с несколькими переменными
- •Рекурсивные вычисления с вектором
- •Советы по набору операторов
- •Переменный верхний предел суммирования
- •Оператор суммирования элементов вектора
- •Производные более высокого порядка
- •Переменные пределы интегрирования
- •Изменение точности вычисления интегралов
- •Криволинейные и двойные интегралы
- •Определение пользовательского оператора
- •Использование пользовательского оператора
- •Запись функций как операторов
- •Тригонометрические функции и обратные им.
- •Гиперболические функции
- •Логарифмические и показательные функции
- •Функции Бесселя
- •Специальные функции
- •Введение в дискретное преобразование Фурье
- •Функция if
- •Циклы “while”
- •Оператор “break”
- •Циклы “for”
- •Подпрограммы
- •Рекурсия
- •Что делать, когда функция root не сходится
- •Некоторые советы по использованию функции root
- •Решение уравнений с параметром
- •Нахождение корней полинома
- •Как использовать найденное решение
- •Что делать, когда Mathcad не может найти решения
- •Что делать, когда имеется слишком мало ограничений
- •Многократное решение уравнений
- •Решение одинаковых задач относительно разных переменных
- •Приближенные решения
- •Использование символьного решения уравнений
- •Дифференциальные уравнения первого порядка
- •Дифференциальные уравнения второго порядка
- •Уравнения более высокого порядка
- •Системы оду первого порядка
- •Системы дифференциальных уравнений более высокого порядка
- •Гладкие системы
- •Медленно изменяющиеся решения
- •Нахождение приближенного решения только в конечной точке
- •Двухточечные краевые задачи
- •Дифференциальные уравнения с частными производными
Формирование новых матриц из существующих
В Mathcad есть две функции для объединения матриц вместе — бок о бок, или одна над другой. В Mathcad также есть функция для извлечения подматрицы. Рисунки 12 и 13 показывают некоторые примеры.
Имя функции |
Возвращается... |
augment (A, B) |
Массив, сформированный расположением A и B бок о бок. Массивы A и B должны иметь одинаковое число строк. |
stack (A, B) |
Массив, сформированный расположением A над B. Массивы A и B должны иметь одинаковое число столбцов. |
submatrix (A, ir, jr, ic, jc) |
Субматрица, состоящая из всех элементов, содержащихся в строках с ir по jc и столбцах с ic по jc. Чтобы поддерживать порядок строк и-или столбцов, удостоверьтесь, что ir<=jr и ic<=jc, иначе порядок строк и-или столбцов будет обращен. |
Рисунок 12: Объединение матриц функциями stack и augment.
Рисунок 13: Извлечение субматрицы из матрицы при помощи функции submatrix.
Собственные значения и собственные векторы
В Mathcad существуют функции eigenval и eigenvec для нахождения собственных значений и собственных векторов матрицы. В Mathcad PLUS также есть функция eigenvecs для получения всех собственных векторов сразу. Если Вы используете Mathcad PLUS, Вы будете также иметь доступ к genvals и genvecs для нахождения обобщенных собственных значений и собственных векторов. Рисунок 14 показывает, как некоторые из этих функций используются.
Имя функции |
Возвращается... |
eigenvals (M) |
Вектор, содержащий собственные значения матрицы M. |
eigenvec (M, z) |
Матрица, содержащая нормированный собственный вектор, соответствующий собственному значению z квадратной матрицы M. |
eigenvecs (M) |
Матрица, содержащая нормированные собственные векторы, соответствующие собственным значениям квадратной матрицы M. n-ный столбец возвращенной матрицы — собственный вектор, соответствующий n-ному собственному значению, возвращенному eigenvals. |
genvals (M,N) |
Вектор v собственных значений, каждое из которых удовлетворяет обобщенной задаче о собственных значениях . Матрицы M и N — вещественнозначные квадратные матрицы одного размера. Вектор x — соответствующий собственный вектор. |
genvecs (M,N) |
Матрица, содержащая нормализованные собственные векторы, соответствующие собственным значениям в v, векторе, возвращенном genvals. n-ный столбец этой матрицы — собственный вектор x, удовлетворяющий обобщенной задаче о собственных значениях . Матрицы M и N — вещественнозначные квадратные матрицы одного размера. |
Рисунок 14: Нахождение собственных значений и собственных векторов.
Рисунок 15: Использование eigenvecs для одновременного нахождения всех собственных векторов.