
- •23. Моделирования единичного события.
- •24. Моделирование полной группы несовместных событий.
- •25. Моделирование совместных независимых событий.
- •3.1. Определение совместных исходов по жребию
- •3.2. Последовательная проверка исходов
- •26. Моделирование совместных зависимых событий.
- •27. Моделирование непрерывных случайных процессов.
- •29. Типовая схема имитационной модели с продвижением времени по событиям.
- •30. Постановка задачи на разработку имитационной модели смо.
21. Моделирование равномерно распределенных случайных величин.
Определение. Непрерывная СВ γ имеет непрерывное равномерное распределение в интервале[a; b], если ее плотность вероятности имеет вид:
При моделировании часто используют случайные числа из интервала [0,1]. В этом случае:
Случайное число из интервала[0,1] xi соответствует числу:
xi' = (b–a)xi + a
Применительно к двоичным дробям случайное число из интервала[0,1] представляет собой бесконечную дробь
Непрерывные СВ существуют только в теории.
На практике все СВ дискретны. Шаг дискретности равен наименьшей единице измерения. Сл. величина кси на интервале[0,1] принимает значения:
xi = i / (2n - 1), i = 0,1,2,... , 2n -1.
pi = 0,5n
22. Моделирование случайных величин с произвольным законом распределения.
В основе моделирования случайных величин с произвольными законами распр. вероятности лежит, как правило, метод обратной функции.
Теорема: (Смирнов)
Если СВ yимеет плотность распределения вероятностейf(y), то распределение случайной величины
(1)
F(y) является по определению функцией распределения СВ.
Из формулы (1)
Моделировать xi мы умеем. Нужно найти неизвестное yi, находящееся в верхнем пределе интеграла. Относительно yi выражение принимает вид
yi = F-1(xi) (2)
поэтому и называется метод ОФ (Смирнова)
Примеров подобного аналитического преобразования СЧ из равномерного распределения в случайное число из произвольного распределения немного, т.к. для многих законов распределения интеграл (1) относится к расходящимся, а численные методы увеличивают затраты машинного времени. Поэтому на практике используются приближенные методы формирования случайных чисел, которые могут быть разделены на специальные и универсальные. Специальные методы пригодны для получения СЧ с конкретными теоретическими законами распределения. Универсальные способы позволяют генерировать числа с любым произвольным законом распределения.
23. Моделирования единичного события.
Под единичным событием будем понимать смену состояний одного элемента или системы, причем состояний всего два. Переход из одного состояния в другое случайный. В любой момент времени система находится в одном состоянии с вероятностью P, а в другом – с вероятностью (1 – P).
Цель моделирования: имитировать состояние такого элемента.
Пусть некоторое событие Aсвершается с вероятностью P(A). Моделью свершения такого единичного события A является попадание значения xiслучайной величины γ РРСВ в интервале [0,1] в числовой интервал [0; P(A)].
Пример: Пусть вероятность состояния элемента P(A) = 0,9. В i-той реализации xi = 0,955. Значит, событие не свершилось.
Фрагмент алгоритма имитации:
k
24. Моделирование полной группы несовместных событий.
Элемент системы или система в целом может находиться во многих (больше двух) несовместных состояниях. Известны вероятности нахождения системы в этих состояниях. Такие события называются полной группой несовместных событий.
Алгоритм моделирования основан на следующей теореме:
Теорема:
В
полной группе несовместных событий
моделью свершения события Am
является попадание значения
в
отрезок Pm
числовой шкалы
,
где n
- число несовместных событий.
Такой способ моделирования несовместных событий обычно называют определением исхода по жребию.
Варианты алгоритмов определения исходов по жребию:
25. Моделирование совместных независимых событий.
Способ моделирования состоит в том, что совместные независимые события сводятся к одному сложному событию. Моделирование может быть выполнено двумя способами:
– определение совместных исходов выбором по жребию;
– последовательная проверка исходов.
3.1. Определение совместных исходов по жребию
По
вероятностям
и
нужно определить вероятности возможных
исходов, т. е. появления совместных
независимых событий. Возможные исходы
совместного события
и соответствующие вероятности
представлены в табл. 2.
Таблица 2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Совместное
событие в
-ой
реализации определяется выбором исхода
по жребию.
Если
случайное число
при очередной реализации окажется,
например, на участке
,
то в данной реализации фиксируется
свершение сложного события
.
Если же окажется
,
то фиксируется событие
.
3.2. Последовательная проверка исходов
Алгоритм последовательной проверки исходов
Проверку
свершения каждого из совместных событий
надо осуществлять разными случайными
числами, так как события независимые.
При первом способе достаточно одного
случайного числа
,
но сравнений может быть больше. Кроме
того, нужно предварительно рассчитывать
вероятности возможных исходов.
26. Моделирование совместных зависимых событий.
Пусть события A и B имеют вероятности свершения P(A) и P(B). Условная вероятность P(B/A) свершения события B при условии, что событие A произошло, известна. Рассмотрим алгоритм моделирования на примере.
Пример
В
ремонтное подразделение поступают
вышедшие из строя средства связи (СС).
В каждом СС могут быть неисправными в
любом сочетании блоки
.
Вероятности выхода из строя блоков
соответственно. Ремонт производится
путем замены неисправных блоков
исправными блоками. В момент поступления
неисправного СС вероятности наличия
исправных блоков
соответственно. При отсутствии хотя бы
одного из исправных блоков
ремонт неисправного СС не производится.
Построить
алгоритм имитационной модели с целью
определения абсолютного и относительного
количества отремонтированных СС с
неисправными блоками
и
из общего количества
поступивших в ремонт СС.
Решение
Для имитации неисправных блоков СС и имитации наличия исправных блоков в ремонтном подразделении воспользуемся способом определения по жребию. Для этого рассчитаем вероятности исходов и сведем их в табл. 3 и 4 соответственно.
Таблица 3
-
С другими
блоками
1
Таблица 4
|
|
|
С другими блоками |
|
|
|
|
|
|
|
1 |
Так как нужно определить абсолютное и относительное количества отремонтированных СС, поступивших с неисправными блоками и , то нет смысла рассчитывать вероятности для других сочетаний неисправных и исправных блоков.
В алгоритме приняты следующие обозначения:
— заданное
количество реализаций модели;
— счетчик
количества реализаций модели;
— счетчик
числа отремонтированных СС за
реализаций модели;
— абсолютное
количество отремонтированных СС;
— относительное
количество отремонтированных СС.
Согласно
постановке задачи в блоках 3…7 по данным
табл. 3 разыгрывается, с какими неисправными
блоками поступает СС в ремонт.
В результате розыгрыша определяется
номер интервала (столбца табл. 3) и
запоминается в переменной
.
Аналогично в блоках 8…11 разыгрывается по данным табл. 3.6 наличие в ремонтном подразделении необходимых блоков для замены.
Если
такие блоки имеются, т. е. выполняется
условие
в блоке
12, в счетчик
(блок
13) добавляется единица.
Алгоритм модели функционирования системы ремонта