
- •5. Магнитный поток. Работа перемещения витка с током в магнитном поле.
- •6. Индукция и напряженность магнитного поля. Закон полного тока.
- •7. Примеры расчёта магнитного поля с помощью закона полного тока.
- •8. Магнитное поле в зазоре тороидальной катушки. Магнитная цепь и магнитодвижущая сила. «Закон Ома» для магнитной цепи.
- •9. Индукция и напряженность магнитного поля. Граничные условия для векторов индукции и напряженности. Преломление линий магнитного поля на границе раздела двух сред.
- •10.Явление электромагнитной индукции. Закон Фарадея и правило Ленца. Вихревое электрическое поле. Циркуляция напряженности в вихревом электрическом поле.
- •11. Явление самоиндукции. Магнитный поток и потокосцепление. Индуктивность. Самоиндукция и взаимная индукция.
- •12. Магнитное поле в веществе. Диамагнетизм и парамагнетизм. Ферромагнетизм. Нелинейность кривой намагничивания. Доменная структура ферромагнетика. Необратимость процессов намагничивания. Гистерезис.
- •13. Ток смещения. Закон полного тока с учётом тока смещения.
6. Индукция и напряженность магнитного поля. Закон полного тока.
Напряжённость магни́тного по́ля — (стандартное обозначение Н) это векторная физическая величина, равная разности вектора магнитной индукции B и вектора намагниченности M.
Где
-магнитная
постоянная
=
Намагни́ченность — векторная физическая величина, характеризующая магнитное состояние макроскопического физического тела. Обозначается обычно М или J. Определяется как магнитный момент единицы объёма вещества:
Здесь,
M — вектор намагниченности; m - вектор
магнитного момента; V — объём.
В общем случае (случае неоднородной, по тем или иным причинам, среды) намагниченность выражается как
и
является функцией координат.
В вакууме (или в отсутствие среды, способной к магнитной поляризации, а также в случаях, когда последняя пренебрежима) напряженность магнитного поля совпадает с вектором магнитной индукции.
В магнетиках (магнитных средах) напряженность магнитного поля имеет физический смысл «внешнего» поля, то есть совпадает (быть может, в зависимости от принятых единиц измерения, с точностью до постоянного коэффициента, как например в системе СИ, что общего смысла не меняет) с таким вектором магнитной индукции, какой «был бы, если магнетика не было».
Например, если поле создается катушкой с током, в которую вставлен железный сердечник, напряженность магнитного поля H внутри сердечника совпадает (в СГС точно, а в СИ - с точностью до постоянного размерного коэффициента) с вектором B0, который был бы создан этой катушкой при отсутствии сердечника и который в принципе может быть рассчитан исходя из геометрии катушки и тока в ней, ничего не зная о материале сердечника и его магнитных свойствах.
Магни́тная
инду́кция
— векторная величина, являющаяся силовой
характеристикой магнитного поля (его
действия на заряженные частицы) в данной
точке пространства. Определяет, с какой
силой
магнитное поле действует на заряд
,
движущийся со скоростью
.
Более конкретно, — это такой вектор, что сила Лоренца , действующая со стороны магнитного поля на заряд , движущийся со скоростью , равна
где косым крестом обозначено векторное произведение, α — угол между векторами скорости и магнитной индукции (направление вектора перпендикулярно им обоим и направлено по правилу буравчика).
Также магнитная индукция может быть определена как отношение максимального механического момента сил, действующих на рамку с током, помещенную в однородное поле, к произведению силы тока в рамке на её площадь.
Является основной фундаментальной характеристикой магнитного поля, аналогичной вектору напряжённости электрического поля.
В системе СГС магнитная индукция поля измеряется в гауссах (Гс), в системе СИ — в теслах (Тл)
1 Тл = 104 Гс
Закон полного тока
Датский физик X.Эрстед в начале 19 века определил главный в теории электромагнетизма экспериментальный факт, он заключается в следующим, протекание по проводникам электрического тока приводит к появлению в окружающем пространстве магнитного поля.
Этот факт предоставил возможность французскому выдающемуся ученому Лмперу выразить формулировкой закон, который на сегодняшний день имеет название закона полного тока.
Проанализируем рисунок ниже, воображаемый контур L в пространстве, ограничивающий поверхность S.
На
этом контуре установим направление
обхода так, чтобы движение с конца
вектора вдоль контура элементарной
площадки dS прослеживалось в направлении
против часовой стрелки.
Далее
представим то, что поверхность S
пронизывается отдельной системой токов,
которая может нести как дискретный
характер (к примеру, систему отдельных
проводников), так и быть непрерывно
распределенной (электронный поток может
послужить этому примером). Не обуславливая
тем временем физической природы данных
токов, будем подразумевать для
конкретности, что они распределены
непрерывно в пространстве с кое-какой
плотностью
То теперь полный ток, пронизывающий контур, найдется в виде
Закон полного тока говорит о том, что циркуляция по контуру L вектора напряженности магнитного поля, инициированного протеканием тока равна полному току, то есть.
Закон полного тока формулирует соотношение выше в интегральной форме.
В том, чтобы связать плотность полного тока в данной гонке с напряженностью магнитного поля, то есть найти дифференциальную форму данного закона, надлежит употребить знаменитой теоремой Стикса из векторного анализа, которая говорит нам о том, что для каждого векторного поля А верно равенство
Использовав крайнюю формулу и перестроив с её помощью
будем располагать
откуда получим из-за произвольности выбранного контура
Формула выше несёт в себе закон полного тока в дифференциальной форме. Заметим, что при помощи закона полного тока в интегральной форме удается разрешить ряд задач, связанных по нахождению магнитного поля заданных токов.