
- •1 Основное кинетическое уравнение массопередачи. Коэффициент массопередачи и движущая сила процесса.
- •2 Движущая сила массообменного процесса при нелинейной равновесной зависимости. Число единиц переноса и его физический смысл.
- •3.Выражение для средней движущей силы и числа единиц переноса при линейной равновесной зависимости.
- •4.Модифицированные уравнения массопередачи. Число единиц переноса. Высота эквивалентная единице переноса.
- •6.Массобмен в системах без твердой фазы . Молекулярная и конвективная диффузия.
- •8.Молекулярная диффузия. Первый закон Фика. Коэффициент диффузии и его физический смысл.
- •9.Уравнение Щукарева. Коэффициент масоотдачи и его физический смысл, сопоставление с коэф. Массопередачи.
- •10.Выражение коэф массопередачи через коэф массоотдачи.
- •11.Равновесие в системах газ-жидкость. Закон Генри. Ур-е равновесной зависимости. Влияние давления и температуры на абсорбцию.
- •12.Равновесие в процессах пар-ж для идеальных смесей. Закон Рауля. Диаграммы t-X-y и X-y.
- •13. Принципиальная схема противоточной абсорбции и графическое изображение процесса.
- •14. Принципиальная схема абсорбции с рециркуляцией жидкости и графическое изображение процесса.
- •15. Схема ректификационной установки непрерывного действия. Материальный баланс ректификационной колонны. Флегмовое число.
- •16. Уравнения рабочих линий процесса ректификации для непрерывно действующей ректификационной колонны. Минимальное и оптимальное флегмовое число.
- •18. Влияние флегмового числа на размеры ректификационной колонны и расход тепла при ректификации. Оптимальное флегмовое число.
- •20. Схема периодически действующей ректификационной установки. Изображение процесса в у-х диаграмме при постоянном составе дистиллята.
- •22Построение кинетической кривой и определение числа тарелок.
- •23. Порядок расчета ректификационной тарельчатой колонны.
- •24.Гидравлический расчет тарельчатых абсорбционных(ректификационных)колонн.
- •21. Тепловой баланс процесса ректификации
- •27.Непрерывная противоточная экстракция .Материальный баланс.Графическое изображение процесса.
- •28.Ступенчатая противоточная экстракция .Принципиальная схема .Графическое изображение процесса.
- •2 9. Многократная экстракция с противотоком растворителя.
- •30. Массопередача в системах с твёрдой фазой.Массопроводность.Диф-ные ур-ния массопров-ти.
- •31. Процесс сушки. Технические способы проведения процесса. Виды связи влаги с материалом.
- •32. Основные способы сушки. Материальный баланс конвективной сушки.
- •33 Диаграмма состояния влажного воздуха (Диаграмма Рамзина)
- •34 Изображение в диаграмме н-х процессов изменения параметров влажного воздуха. Температура точки росы, охлаждение, нагревание, смешивание.
- •35 Уравнение рабочей линии сушки. Построение рабочей линии в н-х диаграмме.
- •36 Тепловой баланс воздушной сушки. Уравнение рабочей линии процесса сушки.
- •37.Параметры, влияющие на процесс сушки. Способы интенсификации сушка.
- •38.Сушка с многократным промежуточным подогревом воздуха. Схема и н-х диаграмма.
- •39.Сушка с частичным возвратом отработанного воздуха.Схема и н-х диаграмма.
- •40.Сушка с замкнутой циркуляцией высушиваемого газа. Схема и н-х диаграмма.
- •41. Процесс адсорбции. Динамическая и статическая активности адсорбентов. Условия, влияющие на
- •42. Физическая сущность процесса адсорбции. Адсорбенты. Условия, способствующие протеканию процесса адсорбции.
- •43. Ионообменные процессы – основные закономерности,
- •44. Кристаллизация. Основные способы проведения кристаллизация. Равновесие в процессах кристаллизации.
- •45. Мембранные процессы. Классификация мембранных процессов в зависимости от их механизма. Область применения.
- •46. Влияние различных параметров на селективность и проницаемость мембран
- •47. Материальный и тепловой баланс изогидрической кристаллизации
- •48. Материальный и тепловой баланс кристаллизации с удалением части растворителя.
8.Молекулярная диффузия. Первый закон Фика. Коэффициент диффузии и его физический смысл.
Закон молекулярном диффузии (первый закон Фика)
Молекулярная диффузия в газах и растворах жидкостей происходит в результате хаотического движения молекул, не связанного с движением потоков жидкости. В этом случае, т. е. когда концентрации перемещающихся в пространстве молекул малы, препятствий к взаимосвязанному их перемещению нет. В результате имеет место перенос молекул распределяемого вещества из областей высоких концентраций в область низких концентраций. Кинетика переноса подчиняется в этом случае первому закону Фика, формулировка которого аналогична закону теплопроводности: количество продиффундировавшего вещества пропорционально градиенту концентраций, площади, перпендикулярной направлению диффузионного потока, и времени:
dM=-D*
(dM-кол-во
продифунд.ве-ва;D-коэф.диффузии,
D-показывает какое кол-во ве-ва дифундирует через пов-ть в 1м2 в течении 1сек. При разности концентраций на расстоянии 1м=1
Размерность D зависит от 1,от агрегатного состояния сис-мы,2. С увелеичением температ.коэф. диффузии увеличивается.3 с увелич.давления коэф.дифуз.уменьшается.
Коэффициент диффузии не является постоянной величиной;численные значения его обычно берут из справочника.
Коэффициент диффузии зависит прежде всего от агрегатного состояния систем: так,коэффициент диффузии для газов примерно на четыре порядка выше,чем для жидкостей.Коэффициент диффузии увеличивается с ростом температуры и уменьшается с повышением давления.
9.Уравнение Щукарева. Коэффициент масоотдачи и его физический смысл, сопоставление с коэф. Массопередачи.
Закон Щукарева: кол-во в-ва перенесенного от поверхности раздела фаз в воспринимающую фазу пропорционально разности концентраций у пов-ти раздела фаз и в ядре потока воспринимающей фазы , пов-ти фазового контакта и времени.
dM=β(Cr-Cf)dF*dτ
β[m\c]-коэф
массоотдачи, хар-т перенос в-ва
конвективными и диф-ми потоками
одновременно, показывает какое кол-во
в-ва передается от пов-ти раздела фаз в
воспринимаемую фазу через 1м2
фазового контакта в течении 1с при
разности концентраций 1кг\м3.
Сr-конц-я в воспринимаемой фазе у поверхности раздела фаз
Сf-конц-я в ядре потока воспринимающей фазы
Концентрация на границе Сr рассматривается как равновесная концентрация.
Для установившегося процесса коэф массоотдачи и концентрации сохраняют постоянное значение в рассматриваемом объеме.
Сопоставление с коэф. массопередачи
Ку=1/(1/βy+Ap/βx)
Kx=1/(1/βx+1/Ap*βy)
Βy- коэф массоотдачи из потока газа к пов-ти фазового контакта
Βx-коэф массоотдачи от пов-ти фазового контакта к потоку жидкисти.
10.Выражение коэф массопередачи через коэф массоотдачи.
Ку=1/(1/βy+Ap/βx)
Kx=1/(1/βx+1/Ap*βy)
Βy- коэф массоотдачи из потока газа к пов-ти фазового контакта[кмоль/(м2*ч*Па]
Βx-коэф массоотдачи от пов-ти фазового контакта к потоку жидкисти.[m/ч]
Чем выше растворимость газа,тем больше значение Ар;для трудно растворимых газов Ар имеет наименьшее значение. Величина Ар влияет на структуру уравнений,описывающих коэф массопередачи.Если ар велико,то можно считать Ку=βу,тогда диффузионное сопротивление сосредоточенно в газовой фазе,если же оно мало ,то Кх=βх, диффузионное сопротивление сосредоточенно в жидкой фазе.