- •Кинематика материальной точки: скорость, ускорение, путь при прямолинейном движении.
- •Угловая скорость и угловое ускорение.
- •Первый закон Ньютона.
- •Второй закон Ньютона.
- •Третий закон Ньютона.
- •Движение в поле тяготения Земли: космические скорости.
- •Космические скорости.
- •Инерциальные системы отсчета.
- •Гравитационная и инертная массы.
- •Момент силы. Момент импульса. Момент силы
- •Момент импульса
- •Определение
- •Основные параметры и законы колебаний маятника.
- •Сложение колебаний. Биения
- •Основные свойства и характеристики волнового движения.
- •Типы волн. Когерентность волн.
- •Интерференция волн.
- •Стоячие волны.
- •Фазовая и групповая скорости волн.
- •Объективные характеристики звуковой волны.
- •Субъективные характеристики звуковой волны.
- •Распространение звука в различных средах. Акустическое сопротивление среды.
- •Особенности распространения звуковых колебаний в замкнутых помещениях.
- •Явление акустического резонанса.
- •Механизм восприятия звука человеком
- •Электрический заряд. Его свойства. Закон сохранения электрического заряда.
- •Закон Кулона. Вид закона Кулона в системе си и сгс.
- •Электрическое поле. Пробный заряд. Напряженность электрического поля.
- •Потенциал электростатического поля. Потенциал поля точечного заряда.
- •Поток вектора напряженности. Его свойства.
- •Теорема Гаусса. Теорема Гаусса и силовые линии.
- •Уравнения Максвелла в электростатике.
- •Поле в проводнике. Потенциал проводника.
- •Поляризация диэлектрика. Поляризованность.
- •Электрическое смещение. Теорема Гаусса для электрического смещения.
- •Конденсаторы. Простые и составные конденсаторы.
- •Энергия конденсатора. Плотность энергии электрического поля.
- •Энергия электрического поля — Энергия заряженного конденсатора равна работе внешних сил, которую необходимо затратить, чтобы зарядить конденсатор
- •Постоянный ток. Сила тока. Плотность тока. Сопротивление.
- •Сторонние силы. Эдс.
- •Магнитная индукция. Сила Лоренца. Закон Ампера.
- •Магнитный момент контура с током. Закон Био — Савара — Лапласа.
- •Теорема Гаусса для магнитного поля.
- •Действие магнитного поля на движущийся заряд. Формула Лоренца.
- •Ускорители заряженных частиц.
- •Эффект Холла. Магнитные поля тока и соленоида.
- •Явление электромагнитной индукции. Закон электромагнитной индукции Фарадея.
- •Правило Ленца. Природа э.Д.С. Электромагнитной индукции.
- •Вращение рамки в магнитном поле.
- •Вихревые токи (токи Фуко). Скин-эффект.
- •Индуктивность контура. Самоиндукция.
- •Токи при замыкании и размыкании цепи.
- •Взаимная индукция. Трансформаторы.
- •Уравнения Максвелла и электромагнитные волны. Скорость их распространения.
- •Энергия электромагнитной волны. Вектор Умова - Пойнтинга.
- •Основные законы оптики. Явление полного отражения.
- •Изображения в плоских зеркалах.
- •Изображения в сферических зеркалах.
- •Тонкие линзы.
- •Уравнение линзы. Уравнение шлифовщика линз.
- •Лупа. Микроскоп.
- •Телескопы.
- •Человеческий глаз как оптический прибор.
Объективные характеристики звуковой волны.
Объективные характеристики - это параметры звуковой волны, которые задаст источник звука (интенсивность, частота и акустический спектр).
Чистые тоны субъективно воспринимаются громкими или тихими в зависимости от силы - интенсивности звука. Сила звука зависит от свойств звучащего тела, от среды, в которой звук распространяется, от местонахождения слушающего по отношению к источнику звука.
Интенсивность звука (I) - величина, определяемая средней по времени энергией (<W>), переносимой звуковой волной в единицу времени сквозь единичную площадку, перпендикулярную направлению распространения волны:
S – площадь площадки.
Субъективные характеристики звуковой волны.
Субъективные характеристики - это параметры звукового ощущения, которое возникает у человека при воздействии звуковых волн (высота тона, громкость звука, тембр).
Громкостью называют субъективное качество, определяющее силу слухового ощущения, вызываемого звуком у слушателя. Чем больше амплитуда колебаний, тем звук громче (чем меньше амплитуда колебаний, тем звук тише).
Однако громкость не определяется только амплитудой силы звука, так как она зависит от частотного состава звукового сигнала, от условий его восприятия и длительности воздействия.
Звук будет тем громче, чем больше упругость среды распространения. Например, на высоких горах, где воздух более разрежен, громкость звука от одного и того же источника будет меньше, чем у подножья горы.
В акустике для количественной оценки громкости применяют метод субъективною сравнения измеряемого звука с эталонным, в качестве которого применяется синусоидальный тон частотой 1кГц. В процессе сравнения уровень эталонного тона изменяют до тех нор, пока эталонный и измеряемый звуки станут восприниматься человеком равногромкими.
Звуковые колебания, происходящие по гармоническому закону, воспринимаются человеком как определенный музыкальный тон. Колебания высокой частоты воспринимаются как звуки высокого топа, звуки низкой частоты - как звуки низкого тона.
Звуковые колебания, не подчиняющиеся гармоническому закону, воспринимаются человеком как сложный звук, обладающий тембром. Тембр помогает нам отличить звук одною музыкальною инструмента от другого.
Акустический спектр – набор частот колебаний, присутствующих в данном звуке.
Распространение звука в различных средах. Акустическое сопротивление среды.
Принцип Гюйгенса-Френеля – про падении волны на перфорированную поверхность, каждое отверстие является вторичным источником.
Звук – это волна. Скорость распространения звуковой волны напрямую зависит от свойств среды, в которой звуковая волна распространяется. Этими свойствами являются упругость и плотность среды. Чем более упругая и более плотная среда, тем скорость распространения звуковой волны в ней выше. Скорость звука измеряется в метрах в секунду. Скорость звука в газах находится в прямой зависимости от температуры газа: с повышением температуры скорость звука возрастает. Скорость распространения звука в газах меньше, чем в жидкостях и в твердых телах. Скорость звука в жидкостях также зависит от температуры жидкости. Она больше, чем в газах, но меньше, чем в твердых телах. Скорость звука в воде зависит не только от температуры воды, но и от концентрации в ней солей. Скорость распространения звука в морской воде несколько выше, чем в пресной
Приведем таблицу скоростей распространения звуковой волны в различных средах:
Среда |
Скорость звука м/с |
Вода |
1485 |
Водород |
1286 |
Воздух |
322 |
Гранит |
3950 |
Двуокись углерода |
258 |
Дерево |
4000 |
Кирпичная кладка |
3480 |
Пробка |
500 |
Резина |
54 |
Свинец |
1300 |
Сталь |
5100 |
Стекло |
5000 |
Отражение звуковых волн от стен – эхо.
Скорость звука при 0 градусах – 332 м/с.
Свойство среды проводить акустическую энергию, в том числе и ультразвуковую, характеризуется акустическим сопротивлением. Акустическое сопротивление среды выражается отношением звуковой плотности к объёмной скорости ультразвуковых волн. Удельное акустическое сопротивление среды устанавливается соотношением амплитуды звукового давления в среде к амплитуде колебательной скорости её частиц. Чем больше акустическое сопротивление, тем выше степень сжатия и разрежения среды при данной амплитуде колебания частиц среды. Численно, удельное акустическое сопротивление среды (Z) находится как произведение плотности среды (ρ) на скорость (с) распространения в ней ультразвуковых волн.
Z = ρc