- •Кинематика материальной точки: скорость, ускорение, путь при прямолинейном движении.
- •Угловая скорость и угловое ускорение.
- •Первый закон Ньютона.
- •Второй закон Ньютона.
- •Третий закон Ньютона.
- •Движение в поле тяготения Земли: космические скорости.
- •Космические скорости.
- •Инерциальные системы отсчета.
- •Гравитационная и инертная массы.
- •Момент силы. Момент импульса. Момент силы
- •Момент импульса
- •Определение
- •Основные параметры и законы колебаний маятника.
- •Сложение колебаний. Биения
- •Основные свойства и характеристики волнового движения.
- •Типы волн. Когерентность волн.
- •Интерференция волн.
- •Стоячие волны.
- •Фазовая и групповая скорости волн.
- •Объективные характеристики звуковой волны.
- •Субъективные характеристики звуковой волны.
- •Распространение звука в различных средах. Акустическое сопротивление среды.
- •Особенности распространения звуковых колебаний в замкнутых помещениях.
- •Явление акустического резонанса.
- •Механизм восприятия звука человеком
- •Электрический заряд. Его свойства. Закон сохранения электрического заряда.
- •Закон Кулона. Вид закона Кулона в системе си и сгс.
- •Электрическое поле. Пробный заряд. Напряженность электрического поля.
- •Потенциал электростатического поля. Потенциал поля точечного заряда.
- •Поток вектора напряженности. Его свойства.
- •Теорема Гаусса. Теорема Гаусса и силовые линии.
- •Уравнения Максвелла в электростатике.
- •Поле в проводнике. Потенциал проводника.
- •Поляризация диэлектрика. Поляризованность.
- •Электрическое смещение. Теорема Гаусса для электрического смещения.
- •Конденсаторы. Простые и составные конденсаторы.
- •Энергия конденсатора. Плотность энергии электрического поля.
- •Энергия электрического поля — Энергия заряженного конденсатора равна работе внешних сил, которую необходимо затратить, чтобы зарядить конденсатор
- •Постоянный ток. Сила тока. Плотность тока. Сопротивление.
- •Сторонние силы. Эдс.
- •Магнитная индукция. Сила Лоренца. Закон Ампера.
- •Магнитный момент контура с током. Закон Био — Савара — Лапласа.
- •Теорема Гаусса для магнитного поля.
- •Действие магнитного поля на движущийся заряд. Формула Лоренца.
- •Ускорители заряженных частиц.
- •Эффект Холла. Магнитные поля тока и соленоида.
- •Явление электромагнитной индукции. Закон электромагнитной индукции Фарадея.
- •Правило Ленца. Природа э.Д.С. Электромагнитной индукции.
- •Вращение рамки в магнитном поле.
- •Вихревые токи (токи Фуко). Скин-эффект.
- •Индуктивность контура. Самоиндукция.
- •Токи при замыкании и размыкании цепи.
- •Взаимная индукция. Трансформаторы.
- •Уравнения Максвелла и электромагнитные волны. Скорость их распространения.
- •Энергия электромагнитной волны. Вектор Умова - Пойнтинга.
- •Основные законы оптики. Явление полного отражения.
- •Изображения в плоских зеркалах.
- •Изображения в сферических зеркалах.
- •Тонкие линзы.
- •Уравнение линзы. Уравнение шлифовщика линз.
- •Лупа. Микроскоп.
- •Телескопы.
- •Человеческий глаз как оптический прибор.
Лупа. Микроскоп.
Простейшим прибором для вооружения глаза является лупа. В качестве лупы применяются собирающие линзы с фокусным расстоянием от 10 до 100 мм. Лупа помещается перед глазом, по возможности ближе к нему, а рассматриваемый предмет — на расстоянии, немного меньшем фокусного расстояния лупы.
Казалось бы, что с помощью лупы можно получать очень большие увеличения,— надо только уменьшать ее фокусное расстояние. Например, при фокусном расстоянии 0,25 мм увеличение лупы равно 1000. Однако пользование лупами с очень малым фокусным расстоянием, а следовательно, и с малым диаметром, практически невозможно. Поэтому лупы с увеличением более 40 не применяются.
Минимальное расстояние на котором глаз обеспечивает четкую фокусировку – 25 см.
Для получения больших увеличений применяется микроскоп. Оптическая система микроскопа состоит из двух частей более или менее сложной конструкции: объектива (обращенного к объекту) и окуляра (обращенного к глазу).
Как и лупа, микроскоп дает возможность рассматривать изображение предмета под большим углом, чем это возможно для невооруженного глаза.
Увеличением микроскопа, как и в случае лупы, называется отношение длины изображения какого-либо отрезка, получаемого на сетчатой оболочке глаза при помощи микроскопа, к длине изображения того же отрезка на сетчатке при рассматривании его невооруженным глазом. Основные части оптической системы микроскопа — объектив и окуляр — размещаются на концах цилиндрической трубки, укрепленной в штативе.
Наличие действительного промежуточного изображения, даваемого объективом, расширяет область применения микроскопа. Оно делает возможным точные измерения размеров предмета, для чего в фокальную плоскость окуляра помещают шкалу, нанесенную на прозрачную пластинку. Можно получить проекцию этого изображения на экран, сфотографировать его и т. д.
Телескопы.
Телескоп – труба, имеет объектив и окуляр.
Исключительное значение имеют зрительные трубы (телескопы) в астрономии. Уже Галилей, первый применивший зрительную трубу для наблюдения небесных тел, сделал ряд важных открытий, хотя его телескоп обладал увеличением всего в 30 раз. Современные телескопы имеют огромные размеры и представляют собой весьма сложные сооружения. Возможности наблюдения, которые дает каждый телескоп, определяются диаметром его отверстия. Поэтому с давних времен научно-техническая мысль направлена на отыскание способов изготовления больших зеркал и объективов. Сейчас уже изготовляют пятиметровые зеркала. Отливка и особенно полировка стекла, а также серебрение такого зеркала представляют серьезную технологическую задачу. При анализе работы телескопа необходимо поставить вопрос не только о размерах даваемых им изображений и о его светосиле, но надо также рассмотреть вопрос и о качестве изображения. Телескопы должны давать высокое качество изображения, т. е. оптическая система телескопа не должна обладать сферической и хроматической аберрацией и другими недостатками. Для этого все преломляющие и отражающие поверхности телескопа должны иметь строго определенную форму, согласованную одна с другой, быть тщательно отшлифованы, отполированы и т. п. При крупных размерах оптических деталей телескопа «исправление» его системы представляет большие трудности. Для устранения аберраций в оптическую систему телескопа вводятся дополнительные линзы и зеркала, что значительно усложняет конструкцию и лишь частично улучшает изображение. Другой путь улучшения телескопов состоит в том, что поверхности зеркала придают не сферическую форму, а форму параболоида вращения. При применении параболического зеркала значительно уменьшается влияние сферической аберрации, но изготовлять параболические зеркала гораздо труднее, чем сферические.