
- •Кинематика материальной точки: скорость, ускорение, путь при прямолинейном движении.
- •Угловая скорость и угловое ускорение.
- •Первый закон Ньютона.
- •Второй закон Ньютона.
- •Третий закон Ньютона.
- •Движение в поле тяготения Земли: космические скорости.
- •Космические скорости.
- •Инерциальные системы отсчета.
- •Гравитационная и инертная массы.
- •Момент силы. Момент импульса. Момент силы
- •Момент импульса
- •Определение
- •Основные параметры и законы колебаний маятника.
- •Сложение колебаний. Биения
- •Основные свойства и характеристики волнового движения.
- •Типы волн. Когерентность волн.
- •Интерференция волн.
- •Стоячие волны.
- •Фазовая и групповая скорости волн.
- •Объективные характеристики звуковой волны.
- •Субъективные характеристики звуковой волны.
- •Распространение звука в различных средах. Акустическое сопротивление среды.
- •Особенности распространения звуковых колебаний в замкнутых помещениях.
- •Явление акустического резонанса.
- •Механизм восприятия звука человеком
- •Электрический заряд. Его свойства. Закон сохранения электрического заряда.
- •Закон Кулона. Вид закона Кулона в системе си и сгс.
- •Электрическое поле. Пробный заряд. Напряженность электрического поля.
- •Потенциал электростатического поля. Потенциал поля точечного заряда.
- •Поток вектора напряженности. Его свойства.
- •Теорема Гаусса. Теорема Гаусса и силовые линии.
- •Уравнения Максвелла в электростатике.
- •Поле в проводнике. Потенциал проводника.
- •Поляризация диэлектрика. Поляризованность.
- •Электрическое смещение. Теорема Гаусса для электрического смещения.
- •Конденсаторы. Простые и составные конденсаторы.
- •Энергия конденсатора. Плотность энергии электрического поля.
- •Энергия электрического поля — Энергия заряженного конденсатора равна работе внешних сил, которую необходимо затратить, чтобы зарядить конденсатор
- •Постоянный ток. Сила тока. Плотность тока. Сопротивление.
- •Сторонние силы. Эдс.
- •Магнитная индукция. Сила Лоренца. Закон Ампера.
- •Магнитный момент контура с током. Закон Био — Савара — Лапласа.
- •Теорема Гаусса для магнитного поля.
- •Действие магнитного поля на движущийся заряд. Формула Лоренца.
- •Ускорители заряженных частиц.
- •Эффект Холла. Магнитные поля тока и соленоида.
- •Явление электромагнитной индукции. Закон электромагнитной индукции Фарадея.
- •Правило Ленца. Природа э.Д.С. Электромагнитной индукции.
- •Вращение рамки в магнитном поле.
- •Вихревые токи (токи Фуко). Скин-эффект.
- •Индуктивность контура. Самоиндукция.
- •Токи при замыкании и размыкании цепи.
- •Взаимная индукция. Трансформаторы.
- •Уравнения Максвелла и электромагнитные волны. Скорость их распространения.
- •Энергия электромагнитной волны. Вектор Умова - Пойнтинга.
- •Основные законы оптики. Явление полного отражения.
- •Изображения в плоских зеркалах.
- •Изображения в сферических зеркалах.
- •Тонкие линзы.
- •Уравнение линзы. Уравнение шлифовщика линз.
- •Лупа. Микроскоп.
- •Телескопы.
- •Человеческий глаз как оптический прибор.
Изображения в плоских зеркалах.
Плоское зеркало — это плоская поверхность, зеркально отражающая свет.
Построение изображения в зеркалах основывается на законах прямолинейного распространения и отражения света.
Таким образом, в плоском зеркале изображение всегда мнимое.
При построении изображения какого-либо предмета, последний представляют как совокупность точечных источников света. Поэтому достаточно найти изображение крайних точек предмета.
уравнение зеркала (d0 – расстояние до объекта, di – до изобрежния).
Изображения в сферических зеркалах.
Сферическое зеркало представляет собой сферический сегмент, зеркально отражающий свет.
Сферические зеркала бывают вогнутые — у них отражающее покрытие нанесено на внутреннюю поверхность, и выпуклые — у них отражающее покрытие нанесено на внешнюю поверхность.
Как строить изображение:
В выпуклом зеркале изображение всегда мнимое, прямое, уменьшенное.
Тонкие линзы.
Линзой называется прозрачное тело, ограниченное двумя сферическими поверхностями. Если толщина самой линзы мала по сравнению с радиусами кривизны сферических поверхностей, то линзу называют тонкой. Линзы входят в состав практически всех оптических приборов. Линзы бывают собирающими и рассеивающими. Собирающая линза в середине толще, чем у краев, рассеивающая линза, наоборот, в средней части тоньше.
|
Собирающие (a) и рассеивающие (b) линзы и их условные обозначения. |
Прямая, проходящая через центры кривизны сферических поверхностей, называется главной оптической осью линзы. В случае тонких линз можно приближенно считать, что главная оптическая ось пересекается с линзой в одной точке, которую принято называть оптическим центром линзы.
У тонкой линзы имеются два главных фокуса, симметрично расположенных относительно линзы на главной оптической оси. У собирающих линз фокусы действительные, у рассеивающих – мнимые. Расстояние между оптическим центром линзы и главным фокусом называется фокусным расстоянием. Оно обозначаетcя той же буквой F.
Основное свойство линз – способность давать изображения предметов. Изображения бывают прямыми и перевернутыми, действительными и мнимыми, увеличенными и уменьшенными. Положение изображения и его характер можно определить с помощью геометрических построений. Для этого используют свойства некоторых стандартных лучей, ход которых известен. Это лучи, проходящие через оптический центр или один из фокусов линзы, а также лучи, параллельные главной или одной из побочных оптических осей.
Как строить изображение в собирающей линзе:
|
В рассеивающей:
|
Уравнение линзы. Уравнение шлифовщика линз.
Расстояния от точки предмета до центра линзы и от точки изображения до центра линзы называются сопряжёнными фокусными расстояниями. Эти величины находятся в зависимости между собой и определяются формулой, называемой формулой тонкой линзы (открытой Исааком Барроу):
формула тонкой линзы (d0 – расстояние до объекта, di – до изобрежния).
Величина D=1/f ([D]=дптр) называется оптической силой линзы
Уравнение шлифовальщика линз: