
- •Собственная и примесная проводимость полупроводников , типы электрических переходов.
- •2. Образование и параметры p-n переходов.
- •4. Виды пробоя в p-n переходе
- •6. Выпрямительные диоды, их параметры , разновидности и сравнительные свойства.
- •7. Стабилитроны и стабисторы
- •8. Высокачастотные диоды.
- •9. Импульсные , днз, туннельные и обращенные диоды
- •10.Диоды с барьером Шотки.
- •11. Варикапы.
- •12. Диод свч
- •14. Устройство и принцип действия бт
- •15. Режимы работы бт Нормальный активный режим
- •Инверсный активный режим
- •Режим насыщения
- •Режим отсечки
- •Барьерный режим
- •16. Токораспределение
- •18. Эквивалентные схемы бт, их разновидности.
- •19. Схемы включения транзистора с об, оэ, ок
- •20. Статические вах транзистора с об и оэ
- •21. Транзистор как четырехполюсник, z,y,h параметры.
- •22. Определение н-параметров биполярного транзистора сравнение по статическим характеристикам.
- •24. Частотные свойства бт, способы улучшения быстродействия.
- •26. Особенности работы бт в режиме переключения.
- •27. Зависимость параметров и характеристик бт от температуры
- •29. Устройство и принцип действия пт с управляющим p-n переходом , их статические характеристики.
- •30. Определение параметров пт по статическим характеристикам
- •31. Классификация пт, характеристики , сравнение с бт
- •Транзисторы с управляющим p-n переходом
- •Транзисторы с изолированным затвором (мдп-транзисторы)
- •32. Пт с изолированным затвором и индуцированным каналом.
- •33. Пт с изолированным затвором и встроенным каналом.
- •35. Тиристоры, диодные и триодные, принцип действия, основные параметры и характеристики. Симисторы.
- •36. Фотоэлектронные приборы: фоторезисторы, фотодиоды,
- •37.Индикаторные прибры. Светодиоды, электролюминисцентные конденсаторы, жки, элт, газоразрядные индикаторы.
- •38.Оптроны, их разновидности, сравнительные характеристики.
- •39.Основные компоненты ис:диоды транзисторы, пассивнее элементы(резисторы, конденсаторы, индуктивности).
- •40.Электровакуумные приборы. Виды электронной эмиссии, разновидности катодов.
- •41. Электровакуумный диод, назначение, устройство. Вах-диода, закон степени 3/2. Параметры.
- •42.Электровакуумный триод, назначение, характеристики и параметры. Закон 3/2, недостатки
- •43 Тетроид. Динатронный эффект и методы его устранения.
- •44.Пентоды, назначение третьей сетки, статические характеристики,разновидности пентодов и изх назначение.
10.Диоды с барьером Шотки.
Диод Шоттки (также правильно Шотки, сокращённо ДШ) — полупроводниковый диод с малым падением напряжения при прямом включении. Назван в честь немецкого физика Вальтера Шоттки. Диоды Шоттки используют переход металл-полупроводник в качестве барьера Шоттки (вместо p-n перехода, как у обычных диодов). Допустимое обратное напряжение промышленно выпускаемых диодов Шоттки ограничено 250 В (MBR40250 и аналоги), на практике большинство диодов Шоттки применяется в низковольтных цепях при обратном напряжении порядка единиц и нескольких десятков вольт.Достоинства применение диодов Шоттки позволяет снизить это значение до 0.2 – 0.4 В. Столь малое прямое падение напряжения присуще только диодам Шоттки с максимальным обратным напряжением порядка десятков вольт. При больших обратных напряжениях, прямое падение становится сравнимым с аналогичным параметром кремниевых диодов, что ограничивает применение диодов Шоттки низковольтными цепями.Барьер Шоттки также имеет меньшую электрическую ёмкость перехода, что позволяет заметно повысить рабочую частоту диода.Благодаря лучшим временным характеристикам и малым емкостям перехода, выпрямители на диодах Шоттки отличаются от традиционных диодных выпрямителей пониженным уровнем помех, что делает их наиболее предпочтительными для применения в импульсных блоках питания аналоговой и цифровой аппаратуры.Недостатки Во-первых, при кратковременном превышении максимального обратного напряжения, диод Шоттки необратимо выходит из строя, в отличие от кремниевых диодов, которые переходят в режим обратного пробоя, и при условии непревышения рассеиваемой на диоде максимальной мощности, после падения напряжения диод полностью восстанавливает свои свойства.Во-вторых, диоды Шоттки характеризуются повышенными (относительно обычных кремниевых диодов) обратными токами, возрастающими с ростом температуры кристалла. Для вышеупомянутого 30Q150 обратный ток при максимальном обратном напряжении изменяется от 0.12 мА при +25°C до 6.0 мА при +125°C. У низковольтных диодов в корпусах ТО-220 обратный ток может превышать величину в сотни миллиампер (MBR4015 - до 600 мА при +125°C). При неудовлетворительных условиях теплоотвода положительная обратная связь по теплу в диоде Шоттки приводит к его катастрофическому перегреву.
Вольт-амперная характеристика барьера Шоттки (рис.1) имеет ярко выраженный несимметричный вид. В области прямых смещений ток экспоненциально растёт с увеличением приложенного напряжения. В области обратных смещений ток от напряжения не зависит. В обоих случаях, при прямом и обратном смещении, ток в барьере Шоттки обусловлен основными носителями заряда - электронами. По этой причине диоды на основе барьера Шоттки являются быстродействующими приборами, поскольку в них отсутствуют рекомбинационные и диффузионные процессы. Несимметричность вольт-амперной характеристики барьера Шоттки является типичной для барьерных структур. Зависимость тока от напряжения в таких структурах обусловлена изменением числа носителей, принимающих участие в процессах зарядопереноса. Роль внешнего напряжения заключается в изменении числа электронов, переходящих из одной части барьерной структуры в другую.