
- •Основные пути видообразования
- •Особенности двойного оплодотворения растений.
- •Проблемы акклиматизации и интродукции животных
- •Популяция как элементарная единица эволюции. Генетическая структура популяций.
- •Современные представления о жизненных формах растений. Современные представления о жизненных формах растений
- •7. Трансформация световой энергии при фотосинтезе.
- •9. Значение позвоночных животных как компонента экосистем
- •10. Образование первичных аминокислот в растениях Образование первичных аминокислот в растениях
- •11. Современные представления о систематике и филогении амфибий.
- •12. Роль фитохромной системы в регуляции процесса цветения у растений.
- •14. Генотип и фенотип. Генокопии и фенокопии
- •15. Общая характеристика отдела Lycopodiopsida, Isoetopsida. Вымершие плауновидные. Значение.
- •16. Примитивные и эволюционно продвинутые группы рептилий; факторы, определяющие их распространение по континентам; понятие об эндемичных видах; примеры эндемичных рептилий.
- •17. Генетическая теория рака. Ретротранспозоны. Понятие об обратной транскрипции.
- •18. Подкласс Lamiidae, Asteridae: краткая характеристика основных семейств (представители, распространение, жизненные формы, особенности вегетативных органов, строение цветка, тип плода, значение).
- •19. Регуляция действия генов.
- •Регуляция действия генов на уровне процессинга мРнк.
- •Регуляция активности генов на уровне трансляции.
- •Регуляция клеточного цикла.
- •21. Основные направления эволюционного преобразования черепа позвоночных.
- •22. Механизм окислительного фосфорилирования.
- •23. Общая характеристика отдела Magnoliophyta. Отличия покрытосеменных от других отделов высших растений. Сравнительная характеристика классов Magnoliopsida, Liliopsida. Разделения на подклассы.
- •24. Сравнительно – анатомический обзор покровов позвоночных и эволюционные тенденции и преобразований.
- •25. Биохимические пути ассимиляции углекислого газа растениями с3 и с4 – типа.
- •27. Современные представления о систематике и филогении птиц.
- •28. Закономерности наследования признаков, установленные Менделем.
- •29. Размножение и жизненные циклы водорослей.
- •30. Основные теории происхождения многоклеточных животных. Разнообразие фагоцителообразных предков многоклеточных. Направления, этапы и результаты их эволюции.
- •31. Основные положения хромосомной теории наследственности, сформулированной Морганом.
- •32. Экология водорослей. Значение водорослей в природе жизни человека.
- •5 Типов клеток:
- •34. Понятие о кариотипе (на примере кариотипа человека). Генетические механизмы определения пола
- •35. Эволюция организаций и структур в подцарстве Настоящие водоросли.
- •36. Основные гипотезы происхождения одноклеточных – сукцессивная и эндосимбиотическая, их достоинства и противоречия. Филогенетические взаимоотношения основных типов простейших.
- •37. Цитологические основы полового и бесполого размножения.
- •38. Надцарство Прокариоты. Общая характеристика (строение клетки, способы питания, размножения, основы систематики).
- •39. Общая характеристика простейших. Важнейшие особенности основных типов и классов. Разнообразие образа жизни и экологических адаптаций одноклеточных животных. Их роль в природе и для человека.
- •40. Геном человека и методы его изучения.
- •41. Корень (анатомическое строение). Морфология корня.
- •42. Основные направления эволюции нервной системы и органов чувств у беспозвоночных животных.
- •43. Картирование генома (генетические, цитологические и физические карты хромосом).
- •44. Цветок (теории происхождения, строения, функции). Диаграммы и формулы цветка.
- •45. Пути эволюции онтогенеза позвоночных животных.
- •46. Механизмы рекомбинации у бактерий (трансформация, конъюгация и трансдукция).
- •47. Семя (строение и функции, типы семян однодольных и двудольных).
- •48. Ценогенетические признаки анамний и амниот, их становление и значение.
- •49. Доказательства полуконсервативного способа репликации днк.
- •50. Плод (строение, подходы к классификации, способы распространения плодов, семян).
- •51. Сравнительно – анатомический обзор дыхательной системы позвоночных, ее особенности у птиц.
- •52. Проявление принципа комплементарности генома в фундаментальных биологических процессах.
- •53. Основные отличия высших растений от низших. Первенцы наземной флоры отделы Phyniophyta, Zosterophyllophyta: общая характеристика, представители.
- •54. Происхождение цикла развития высших растений. Причины преимущественного развития спорофита в условиях суши.
- •55. Механизмы становления пола у млекопитающих; регулирующие факторы.
- •56. Естественный и искусственный отбор. Основные формы и значения в эволюции селекции.
- •57. Общая характеристика отдела Bryophyta как гаметодинамической линии эволюции высших растений. Разделение на классы и подклассы, их краткая характеристика. Значение.
- •58. Эмбриогенез у позвоночных животных; его стадийность; подвижность клеток. Роль клеточного аффинитета.
- •59. Генная инженерия. Трансгенные организмы.
- •60. Анатомия стебля (первичное и вторичное строение). Строение стебля двудольных и однодольных.
- •61. Особенности трансформации у про – и эукариот. Банки генов. Особенности трансформации у про – и эукариот. Банки генов.
- •62. Побег (строение, функции, метаморфоз побега и его частей).
- •64. Задачи методики и селекции. Понятие о сорте.
- •65. Основные анатомо – морфологические особенности растений (симметрия, полярность, геотропизм, гетеробатмия, ветвление, нарастание).
- •67. Нехромосомная наследственность. Плазмон и плазмогены.
- •68. Растительные ткани (определение, принципы классификации тканей, типы тканей растения)
- •70. Современные представления о гене. Типы генов. Структура гена. Репликация у прокариот и эукариот.
- •71. Специфика организации растительной клетки (клеточная оболочка, пластиды, вакуоль, эргастические вещества).
- •74. Классификация грибных организмов. Низшие и высшие грибы.
- •1. Подтип Жабродыщащие (Branchiata)
- •2. Подтип Трилобитообразные (Trilobitomorpha)
- •3. Подтип Хелицеровые (Chelicerata)
- •4. Подтип Трахейнодышащие (Tracheata)
- •76. Системы репарации днк.
- •77. Место грибов в системе органического мира, различные взгляды на их происхождение
- •Происхождение грибов.
- •80. Экология грибов. Значение грибов в природе и для человека.
- •Коротко
- •Основные аромофозы.
- •Класс Пиявки (Hirudinea)
- •Филогения типа Nemathelminthes
- •Модификационное взаимодействие.
- •Коротко. Типы взаимодействия генов
- •Модификационное взаимодействие.
- •Геномика
- •Ортологичные и паралогичные гены
- •"Обратная генетика"
- •Протеом и протеомика
- •Коротко.
- •"Обратная генетика"
- •Протеом и протеомика
- •Ортологичные и паралогичные гены
- •П/кл. Caryophyllidae – Кариофиллиды.
- •Подсемейство Alsinoideae - Альсиновые
- •2. Подсемейство Silenoideae — Смолевковые:
- •Подкласс Dilleniidae – Дилленииды.
- •В морфологическом плане в организме имеют в виду два типа клеток, выделяющих тепло и два типа работы, им соответствующие:
Геномика
В настоящее время параллельно с изучением генома человека расшифрованы последовательности ДНК и изучены функции генов у многих видов бактерий и вирусов, одноклеточных эукариотических организмов: дрожжей и многоклеточных: круглого червя нематоды, насекомого - плодовой мушки дрозофилы и растения арабидопсиса. В 2002 г. расшифрован геном мыши, успешно развиваются исследования геномов пшеницы, риса и других однодольных. Это создало предпосылки для сравнения геномов организмов разных таксономических категорий. То есть результаты исследований геномов разных организмов заложили основы новой науки — геномика. Это наука о геномах. Термин "геномика" появился только в 1985 году и относится к науке, занимающейся картированием и секвенированием геномов.
Какие основные задачи решает геномика?
Секвенирование геномов различных организмов, выявление ранее неизвестных генов, изучение локализации и строения генов и других участков генома. Например, у человека собственно гены составляют менее 10% всего генома (3%).
Выявление функций каждого гена, изучение механизмов регуляции работы геномов.
Изучение вопросов происхождения видов, биоразнообразия, сохранения и использования биологических ресурсов планеты.
Различают структурную и функциональную геномику. Целью структурной геномики является выяснение последовательности оснований в молекулах ДНК у организмов различных видов. Функциональная геномика -это учение о функциях генов. Одним из основных экспериментальных подходов при изучении структурно-функциональной организации генома и механизмов генной экспрессии, а также для диагностики наследственных и инфекционных заболеваний в медицине, ветеринарии и растениеводстве является метод молекулярной гибридизации нуклеиновых кислот.
Первые успехи геномики связаны с расшифровкой геномов вирусов, бактерий (представляющих интерес для медицины, промышленности и фундаментальной биологической науки) и клеточных органелл. В 1905 году была определена полная нуклеотидная последовательность небольших геномов патогенных бактерий - микоплазмы и гемофильной палочки, а в 1996-98 гг. были расшифрованы геномы еще 15 бактерий, в том числе риккетсии (возбудителя тифа), микобактерии (причины туберкулеза), гелиобактера - недавно открытой бактерии, которая является источником гастритов и язвы желудка. Изучение геномов этих бактерий позволило выяснить генетическую природу их патогенности, идентифицировать соответствующие гены. Например, у больного гемофилией найдено 115 генов, которых нет у непатогенных бактерий, из них более 80 отвечают за взаимодействие бактерии с клеткой хозяина и степень болезнетворности.
У классического модельного объекта генетики — кишечной палочки (E.coli), геном которой составляет около 4,6 млн пн, обнаружено около 4 тыс. генов, из них у 40% функции еще не известны. Геном простейших эукариотических организмов - дрожжей состоит из 12 млн. пн и примерно 6 тыс. генов, однако функции 2 тыс. генов до сих пор не известны. Поэтому сейчас особое внимание ученых сконцентрировано на выяснение функций разных генов.
Ключевой проблемой, которую необходимо решить в связи с получением большого количества новой информации, является соотнесение первичных структур открываемых новых генов с функциями кодируемых этими генами белков и нуклеиновых кислот.
Структурно-функциональный анализ генома человека особенно важен для клинической медицины, ставящей перед собой задачи не только диагностики наследственных болезней, но и лечения - генотерапии. Благодаря геномике возникло новое понимание молекулярных механизмов заболеваний, используются новые подходы в создании лекарств, новые диагностические тесты. Появилась фармакогеномика - наука, являющаяся одновременно основой преодоления лекарственной резистентности и основой индивидуальной фармакотерапии. Наконец, геномика положила начало получению трансгенных животных и растений медицинского назначения.