
- •Основные пути видообразования
- •Особенности двойного оплодотворения растений.
- •Проблемы акклиматизации и интродукции животных
- •Популяция как элементарная единица эволюции. Генетическая структура популяций.
- •Современные представления о жизненных формах растений. Современные представления о жизненных формах растений
- •7. Трансформация световой энергии при фотосинтезе.
- •9. Значение позвоночных животных как компонента экосистем
- •10. Образование первичных аминокислот в растениях Образование первичных аминокислот в растениях
- •11. Современные представления о систематике и филогении амфибий.
- •12. Роль фитохромной системы в регуляции процесса цветения у растений.
- •14. Генотип и фенотип. Генокопии и фенокопии
- •15. Общая характеристика отдела Lycopodiopsida, Isoetopsida. Вымершие плауновидные. Значение.
- •16. Примитивные и эволюционно продвинутые группы рептилий; факторы, определяющие их распространение по континентам; понятие об эндемичных видах; примеры эндемичных рептилий.
- •17. Генетическая теория рака. Ретротранспозоны. Понятие об обратной транскрипции.
- •18. Подкласс Lamiidae, Asteridae: краткая характеристика основных семейств (представители, распространение, жизненные формы, особенности вегетативных органов, строение цветка, тип плода, значение).
- •19. Регуляция действия генов.
- •Регуляция действия генов на уровне процессинга мРнк.
- •Регуляция активности генов на уровне трансляции.
- •Регуляция клеточного цикла.
- •21. Основные направления эволюционного преобразования черепа позвоночных.
- •22. Механизм окислительного фосфорилирования.
- •23. Общая характеристика отдела Magnoliophyta. Отличия покрытосеменных от других отделов высших растений. Сравнительная характеристика классов Magnoliopsida, Liliopsida. Разделения на подклассы.
- •24. Сравнительно – анатомический обзор покровов позвоночных и эволюционные тенденции и преобразований.
- •25. Биохимические пути ассимиляции углекислого газа растениями с3 и с4 – типа.
- •27. Современные представления о систематике и филогении птиц.
- •28. Закономерности наследования признаков, установленные Менделем.
- •29. Размножение и жизненные циклы водорослей.
- •30. Основные теории происхождения многоклеточных животных. Разнообразие фагоцителообразных предков многоклеточных. Направления, этапы и результаты их эволюции.
- •31. Основные положения хромосомной теории наследственности, сформулированной Морганом.
- •32. Экология водорослей. Значение водорослей в природе жизни человека.
- •5 Типов клеток:
- •34. Понятие о кариотипе (на примере кариотипа человека). Генетические механизмы определения пола
- •35. Эволюция организаций и структур в подцарстве Настоящие водоросли.
- •36. Основные гипотезы происхождения одноклеточных – сукцессивная и эндосимбиотическая, их достоинства и противоречия. Филогенетические взаимоотношения основных типов простейших.
- •37. Цитологические основы полового и бесполого размножения.
- •38. Надцарство Прокариоты. Общая характеристика (строение клетки, способы питания, размножения, основы систематики).
- •39. Общая характеристика простейших. Важнейшие особенности основных типов и классов. Разнообразие образа жизни и экологических адаптаций одноклеточных животных. Их роль в природе и для человека.
- •40. Геном человека и методы его изучения.
- •41. Корень (анатомическое строение). Морфология корня.
- •42. Основные направления эволюции нервной системы и органов чувств у беспозвоночных животных.
- •43. Картирование генома (генетические, цитологические и физические карты хромосом).
- •44. Цветок (теории происхождения, строения, функции). Диаграммы и формулы цветка.
- •45. Пути эволюции онтогенеза позвоночных животных.
- •46. Механизмы рекомбинации у бактерий (трансформация, конъюгация и трансдукция).
- •47. Семя (строение и функции, типы семян однодольных и двудольных).
- •48. Ценогенетические признаки анамний и амниот, их становление и значение.
- •49. Доказательства полуконсервативного способа репликации днк.
- •50. Плод (строение, подходы к классификации, способы распространения плодов, семян).
- •51. Сравнительно – анатомический обзор дыхательной системы позвоночных, ее особенности у птиц.
- •52. Проявление принципа комплементарности генома в фундаментальных биологических процессах.
- •53. Основные отличия высших растений от низших. Первенцы наземной флоры отделы Phyniophyta, Zosterophyllophyta: общая характеристика, представители.
- •54. Происхождение цикла развития высших растений. Причины преимущественного развития спорофита в условиях суши.
- •55. Механизмы становления пола у млекопитающих; регулирующие факторы.
- •56. Естественный и искусственный отбор. Основные формы и значения в эволюции селекции.
- •57. Общая характеристика отдела Bryophyta как гаметодинамической линии эволюции высших растений. Разделение на классы и подклассы, их краткая характеристика. Значение.
- •58. Эмбриогенез у позвоночных животных; его стадийность; подвижность клеток. Роль клеточного аффинитета.
- •59. Генная инженерия. Трансгенные организмы.
- •60. Анатомия стебля (первичное и вторичное строение). Строение стебля двудольных и однодольных.
- •61. Особенности трансформации у про – и эукариот. Банки генов. Особенности трансформации у про – и эукариот. Банки генов.
- •62. Побег (строение, функции, метаморфоз побега и его частей).
- •64. Задачи методики и селекции. Понятие о сорте.
- •65. Основные анатомо – морфологические особенности растений (симметрия, полярность, геотропизм, гетеробатмия, ветвление, нарастание).
- •67. Нехромосомная наследственность. Плазмон и плазмогены.
- •68. Растительные ткани (определение, принципы классификации тканей, типы тканей растения)
- •70. Современные представления о гене. Типы генов. Структура гена. Репликация у прокариот и эукариот.
- •71. Специфика организации растительной клетки (клеточная оболочка, пластиды, вакуоль, эргастические вещества).
- •74. Классификация грибных организмов. Низшие и высшие грибы.
- •1. Подтип Жабродыщащие (Branchiata)
- •2. Подтип Трилобитообразные (Trilobitomorpha)
- •3. Подтип Хелицеровые (Chelicerata)
- •4. Подтип Трахейнодышащие (Tracheata)
- •76. Системы репарации днк.
- •77. Место грибов в системе органического мира, различные взгляды на их происхождение
- •Происхождение грибов.
- •80. Экология грибов. Значение грибов в природе и для человека.
- •Коротко
- •Основные аромофозы.
- •Класс Пиявки (Hirudinea)
- •Филогения типа Nemathelminthes
- •Модификационное взаимодействие.
- •Коротко. Типы взаимодействия генов
- •Модификационное взаимодействие.
- •Геномика
- •Ортологичные и паралогичные гены
- •"Обратная генетика"
- •Протеом и протеомика
- •Коротко.
- •"Обратная генетика"
- •Протеом и протеомика
- •Ортологичные и паралогичные гены
- •П/кл. Caryophyllidae – Кариофиллиды.
- •Подсемейство Alsinoideae - Альсиновые
- •2. Подсемейство Silenoideae — Смолевковые:
- •Подкласс Dilleniidae – Дилленииды.
- •В морфологическом плане в организме имеют в виду два типа клеток, выделяющих тепло и два типа работы, им соответствующие:
46. Механизмы рекомбинации у бактерий (трансформация, конъюгация и трансдукция).
Вопрос о том, возможна ли рекомбинация у бактерий, т. е обмен генетическим материалом, долгое время оставался открытым. Его решение имело глобальное значение для биологии с точки зрения установления общности генетических закономерностей для всех живых организмов. К 1952 г были установлены три основных механизма рекомбинации у прокариот: конъюгация, трансдукция, трансформация. Возможность полого процесса была продемонстрирована результатами электронно - микроскопических исследований. Тейтум и Ледерберг в своих опытах доказали что при конъюгации осуществляется процесс рекомбинации. Они смешивали 2 ауксотрофных (мутанты, у которых нарушено какое-то звено биосинтеза орг. соединений и они могут жить на среде, в которую добавлено блокирующее соединение) штамма E. Coli, один для роста нуждался в треонине (Т), лейцине (L) и тиамине, а другой – в биотине, фенилаланине и цистеине. Каждый из штаммов по отдельности погибал на минимальной среде, а при посеве их смесью прототрофные к-ки появлялись в культуре с частотой 10-6 – 10-9. Присутствие у них всех 6 нормальных аллелей служит доказательством рекомбинации ген. материала, которая объединила часть хромосом одного штамма с частью хромосом др. в результате полового процесса. Контакт м/у клетками (сопровождающийся кросенговером) осуществляется ч/з цитоплазматический мостик. Хейс в 1952 г установил половой фактор F в виде плазмиды. Половой фактор есть только у бактерии мужского пола доноров ген. материала, а женские – реципиентами. F фактор ведет себя двояко: как автономная цитоплазм частица и как локус бактериальной хромосомы. В последнем случае плазмада становится эписомой.(способны к взаимному превращению). Разрыв кольцевой хромосомы бактерии происходит справа и слева от F и свободный от F конец хромосомы становится начальной точкой переноса группы сцепления генов бактерий – это локус о (origin). В к-ку реципиент входит однонитевая ДНК из молекулы донора. Ее переход осуществляется по типу катящегося кольца. В результате в к-ке реципиенте оказываются 2 х-мы, а в к-ке доноре – 1. Гены, вошедшие при конъюгации в к-ку реципиент вкл. в ее хромосому способом аналогичным кроссинговеру. И при деление такой оплодотворенной к-ке появляются рекомбинанты. Таким образом в период конъюгации кольцо хромосомы донора у бактерий разрезается и при норм. протекании полностью в линейной с-ре переходит в к-ку реципиента. Из образовавшейся диплоидной зиготы при ее деление образуется гаплойдноу потомство, вкл. по одной кольцевой х-ме. Часть потомства может быть представлена рекомбинантами, т. к. гены, вошедшие при конъюгации в к-ку реципиент, вкл в ее х-му способом аналогичным кроссинговеру.
Трансформация. Открыто Гриффитсом в 1928 г в опытах с пневмококками. Известно 2 штамма: вирулентные (имеют гладкую капсулу и обр. гладкие колонии) и авирулентные (бескапсульные и имеющие шероховатую колонию). Смешал авирулентный штамм с убитым нагреванием вирулентным и наблюдал гибель зараженных этой смесью мышей. Изучение популяций бактерий из инфицированных мышей показало, что часть к-к из авирулентных превратилась в вирулентные. Эйвери, Мак-Леод и Мак Карти в 1944 г. доказали что трансформирующем агентом является ДНК. На три пробирки со смесью авирулентных и убитых вирулентных штаммов они действовали ДНК-азой, РНК-зой, протеазой. Только при обработке ДНК-зой трансформирующая способность в смеси не наблюдалась. Трансформация – это передача генов от одного штамма бактерий к другому в форме растворенных фрагментов ДНК, которые могут происходить от живых или мертвых к-к. Эти фрагменты могут проникать только в компетентные к-к, т е. имеющие рецепторы на поверхности. Попав внутрь, фрагмент замещает путем рекомбинации короткие участки ДНК рецепторной к-к, которые содержат зоны гомологии. Распад донорской ДНК на фрагменты происходит под действием дезоксирибонулеаз или рестриктаз. Однако в к-к есть система ферментативной модификации определенных оснований ДНК, предохраняющих молекулу ДНК от распада. Поэтому только у мутантов с пониженной активностью ферментативной модификации удается получить трансформанты
Трансдукция. Открыл Зиндер в 1951 г. Трансдукция обусловлена способностью умеренного фага переносить гены от бактерий-доноров к бактериям реципиентам. Известны 2 типа бактериофагов вирулентные и умеренные. Вирулентные после размножения в к-ке приводят к ее лизису. Существуют в вегетативном состоянии (при размножении внутри к-ки) или в зрелом (метаболически инертном состоянии). Умеренные фаги могут быть в состоянии профага. Бактерии несущие профаг назыв. лизогенные. Они приобретают иммунитет к дополнительному заражению таким же фагом. Состояние профага временно. Умеренный фаг может вызвать как литическую так и лизогенную реакцию. Опыт. Высеивал 2 штама тифозной бактерии, один нуждался в пролине, триптофане, а другой в метионине и гистидине. В смешенной культуре наблюдал появление прототрофных колоний. Затем выращивал эти штаммы в U-образной трубке, разделенной бактериальным фильтром. Так же были получены рекомбинанты. Было установлено что перенос генов осуществляется фильтрующимся агентом – умеренным бактериофагом р22, по которому был лизогеннен один из штаммов. Фаг р22 был способен трансдуцировать любые гены сальмонеллы, т.е осуществлять общую или неспецифическую трансдукцию. При специфической трансдукции фаг может переносить только определенные гены.