Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Мои Билеты-Биология.docx
Скачиваний:
56
Добавлен:
26.09.2019
Размер:
388.9 Кб
Скачать

2.Клетка как открытая система. Организация потока энергии. Второй закон термодинамики. Энтропия. Диссимиляция. Гликолиз и тканевое дыхание. Окислительное фосфорилирование. Атф. Митохондрии.

Энтропи́я (от др.-греч. ἐντροπία - поворот, превращение) — в естественных науках мера беспорядка системы, состоящей из многих элементов. В частности, в статистической физике — мера вероятности осуществления какого-либо макроскопического состояния; в теории информации — мера неопределённости какого-либо опыта (испытания), который может иметь разные исходы, а значит, и количество информации; в исторической науке, для экспликации феномена альтернативности истории (инвариантности и вариативности исторического процесса).

Естественные процессы всегда направлены в сторону достижения системой равновесного состояния (механического, термического или любого другого). Это явление отражено вторым законом термодинамики, имеющим большое значение и для анализа работы теплоэнергетических машин. В соответствии с этим законом, например, теплота самопроизвольно может переходить только от тела с большей температурой к телу с меньшей температурой. Для осуществления обратного процесса должна быть затрачена определенная работа. В связи с этим второй закон термодинамики можно сформулировать следующим образом: невозможен процесс, при котором теплота переходила бы самопроизвольно от тел более холодных к телам более теплым (постулат Клаузиуса, 1850 г.).

Второй закон термодинамики определяет также условия, при которых теплота может, как угодно долго преобразовываться в работу. В любом разомкнутом термодинамическом процессе при увеличении объема совершается положительная работа:

ДИССИМИЛЯЦИЯ (диссимиляторный процесс, катаболизм), явление, характерное для всякого живого организма и выражающееся в беспрерывно идущем частичном его саморазрушении; при этом различные органические вещества тела при участии 02 претерпевают распад до простых «конечных» продуктов: СОг, Н20 и NH3 (NH3 получается только из азотсодержащих органических веществ, напр. из белков); конечные продукты выделяются из организма по мере накопления, при чем аммиак предварительно превращается путем нек-рой хим. реакции в мочевину (NH 2. CO.NH 2).

Почти все окислительные реакции происходят в митохондриях, а высвобождаемая энергия запасается в виде макроэргического соединения — АТФ. В дальнейшем для обеспечения внутриклеточных метаболических процессов энергией используется именно АТФ, а не питательные вещества.

Молекула АТФ содержит: (1) азотистое основание аденин; (2) пентозный углевод рибозу, (3) три остатка фосфорной кислоты. Два последних фосфата соединены друг с другом и с остальной частью молекулы макроэргическими фосфатными связями, обозначенными на формуле АТФ символом ~. При соблюдении характерных для организма физических и химических условий энергия каждой такой связи составляет 12000 калорий на 1 моль АТФ, что во много раз превышает энергию обычной химической связи, поэтому фосфатные связи и называют макроэргическими. Более того, эти связи легко разрушаются, обеспечивая внутриклеточные процессы энергией сразу, как только в этом возникает необходимость.

При высвобождении энергии АТФ отдает фосфатную группу и превращается в аденозиндифосфат. Выделившаяся энергия используется практически для всех клеточных процессов, например в реакциях биосинтеза и при мышечном сокращении.

Роль митохондрий в химических реакциях образования АТФ. При попадании внутрь клетки глюкоза под действием ферментов цитоплазмы превращается в пировиноградную кислоту (этот процесс называют гликолизом). Энергия, высвобождаемая в этом процессе, затрачивается на превращение небольшого количества АДФ в АТФ, составляющего менее 5% общих запасов энергии.