Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Практическая часть нет вопросов 65-66-92-93-96.doc
Скачиваний:
3
Добавлен:
26.09.2019
Размер:
2.38 Mб
Скачать

47.Что такое автокорреляция остатков? Когда она может возникать в регрессионной модели?

Автокорреляция — это взаимосвязь последовательных элементов временного или пространственного ряда данных. Это ситуация, когда дисперсия остатков постоянная, но наблюдается их ковариация. Автокорреляция в остатках есть нарушение одной из основных предпосылок МНК – предпосылки о случайности остатков, полученных по уравнению регрессии. Один из возможных путей решения этой проблемы состоит в применении к оценке параметров модели обобщенного МНК.

Автокорреляцией остатков модели регрессии ei (или случайных ошибок регрессии модели βi) называется корреляционная зависимость между настоящими и прошлыми значениями остатков.

Среди основных причин, вызывающих появление автокорреляции, можно выделить ошибки спецификации, инерцию в изменении показателей, эффект паутины, сглаживание данных.

  1. Ошибки спецификации. Неучет в модели какой-либо важной объясняющей переменной либо неправильный выбор формы зависимости обычно приводит к системным отклонениям точек наблюдений от линии регрессии, что может обусловить автокорреляцию.

  1. Инерция. Многие показатели (например, инфляция, безработица, ВНП и т.п.) обладают определенной цикличностью, связанной с волнообразностью деловой активности. Действительно, экономический подъем приводит к росту занятости, сокращению инфляции, увеличению ВНП и т.д. Этот рост продолжается до тех пор, пока изменение конъюктуры рынка и ряда экономических характеристик не приведет к замедлению роста, затем остановке и движению вспять рассматриваемых показателей. В любом случае эта трансформация происходит не мгновенно, а обладает определенной инертностью.

  1. Эффект паутины. Показатели реагируют на изменение условий с запаздыванием (временным лагом). Например, предложение сельскохозяйственной продукции реагирует на изменение цены с запаздыванием (равным периоду созревания урожая). Большая цена сельскохозяйственной продукции в прошедшем году вызовет (скорее всего) ее перепроизводство в текущем году, а следовательно, цена на нее снизится и т. д.

  1. Сглаживание данных. Зачастую данные по некоторому продолжительному временному периоду получают усреднением данных по составляющим его подынтервалам. Это может привести к определенному сглаживанию колебаний, которые имелись внутри рассматриваемого периода, что в свою очередь может послужить причиной автокорреляции.

Вообще обычно мы исследуем автокорреляцию, если у нас временная выборка.

48. К каким последствиям для свойств мнк-оценок ведет нарушение каждого из условий Гаусса – Маркова?

  • Гомоскедастичность – МНК оценки остаются состоятельными и несмещенными, но теряется эффективность – оценки неэффективные

  • Автокорреляция – МНК оценки остаются состоятельными и несмещенными, но теряется эффективность – оценки неэффективные.

Мы неправильно оцениваем стандартные ошибки – либо переоцениваем, либо недооцениваем. В итоге мы будем чаще считать, что получили хорошую модель, когда на самом деле она плохая.

49-50.Зачем в совокупность условий вероятностной модели регрессии включается условие нормальности?

Если ошибки(в формуле эпсилоны) описываются нормальным распределением. То по т.Рао: выполненные 4 усл. Гаусса-Маркова и 5 – (нормальность), то МНК-оценки являются несмещенными, состоятельными и наиболее эффективных среди вообще всех оценок.