
- •1.Электрический заряд и его свойства. Дискретность. Элементарный электрический заряд. Закон сохранения электрического заряда.
- •2.Электрическое поле. Закон Кулона. Диэлектрическая проницаемость.
- •4.Работа в электростатическом поле. Потенциальная энергия поля. Потенциальность поля.
- •5.Потенциал. Разность потенциалов. Связь между напряжением и напряженностью
- •7.Электроемкость. Конденсаторы. Емкость плоского конденсатора. Энергия электрического поля
- •8.Последовательное и параллельное соединение конденсаторов
- •9.Электрический ток. Условия существования эл.Тока. Сила тока и плотность тока
- •10.Закон Ома для участка цепи. Сопротивление. Зависимость сопротивления проводника от температуры
- •11.Последовательное и параллельное сопротивление проводников
- •12.Работа и мощность электрического поля. Закон Джоуля-Ленца
- •13.Электродвижущая сила. Закон Ома для замкнутой цепи
- •14.Магнитное поле. Индукция магнитного поля. Магнитные силовые линии. Взаимодействие параллельных токов
- •15.Проводник с током в магнитном поле
- •16.Сила Лоренца. Движение заряженной частицы в магнитном поле
- •17.Магнитный поток. Явление электромагнитной индукции. Закон электромагнитной индукции и правило Ленца
- •18.Эдс индукции в движущихся проводниках в магнитном поле. Вихревое электрическое поле
- •19.Самоиндукция. Индуктивность. Эдс самоиндукции. Энергия магнитного поля
- •20.Колебательное движение. Гармонические колебания и их характеристики.
- •21.Пружинный и математический маятники. Энергетические превращения при их колебаниях.
- •22.Свободные электромагнитные колебания в колебательном контуре. Энергетические превращения в колебательном контуре. Формула Томпсона
- •23.Вынужденные электрические колебания. Переменный ток и его характеристики
- •24.Получение переменного тока при вращении витка в магнитном поле. Генератор переменного тока.
- •25.Передача и распределение электроэнергии. Устройство и принцип действия трансформатора
- •26.Электромагнитное поле. Электромагнитные волны и их свойства. Принципы радиосвязи. Радиолокация
- •27.Электромагнитная природа света. Скорость света. Зависимость между длиной световой волны и частотой электромагнитных колебаний
- •28.Интерференция света. Когерентность и монохроматичность
- •29.Дифракция света. Дифракционная решетка
- •30.Отражение и преломление света. Полное внутреннее отражение света
- •31.Дисперсия света. Разложение белого света призмой
- •32.Преломление света в линзах
- •33.Экспериментальные основы теории относительности. Постулаты Энштейна. Следствия из постулат
- •34.Зависимость массы от скорости в сто. Закон взаимосвязи массы и энергии
- •35.Гипотеза Планка. Фотон и его свойства. Корпускулярно-волновой дуализм
- •36.Внешний фотоэффект и его законы. Уравнение Энштейна для фотоэффекта
- •37.Опыты Резерфорда. Планетарная модель атома
- •38.Квантовые постулаты Бора. Оптические спектры. Излучение и поглощение энергии атомами. Строение атома водорода по Борну
- •39.Тепловое равновесие. Температура. Тепловое расширение тел. Измерение температуры
- •40. Идеальный газ. Уравнение состояния идеального газа
- •41.Газовые законы. Применение газов в технике
- •42.Внутренняя энергия идеального газа
- •43.Работа в термодинамике – ебала какая-то
- •44.Количество теплоты
- •45.Первое начало термодинамики. Применение 1 начала термодинамики к изопроцессам в идеальных газах
- •46.Второе начало термодинамики. Тепловые двигатели. Кпд тепловых двигателей. Цикл Карно. Максимальный кпд тепловых двигателей
- •47.Основные положения молекулярно-кинетической теории вещества, и их опытное доказательство. Диффузия и броуновское движение
- •48.Размеры и масса молекул. Постоянная Авогадро
- •49.Силы взаимодействия молекул. Особенности внутреннего строения газов, жидкостей и твердых тел
- •50.Давление газа. Основное уравнение молекулярно-кинетической теории
- •51.Насыщенный пар и его свойства. Кипение жидкости
- •52.Влажность воздуха. Абсолютная и относительная влажность. Приборы для измерения влажности
- •53.Поверхностное натяжение. Смачивание. Капиллярные явления
- •54.Характеристики твердого состояния вещества. Кристаллы. Строение и свойства кристаллических веществ. Аморфные тела
- •55.Деформация. Виды деформации. Механическое напряжение. Закон Гука. Диаграмма напряжений и ее характеристики
- •56.Электрический ток в полупроводниках. Собственная и примесная проводимости. Электронно-дырочный переход. Полупроводниковый переход
- •57.Электрический ток в электролитах. Законы Фарадея
- •58.Электрический ток в газах. Самостоятельный и несамостоятельный разряды. Различные типы самостоятельного разряда и их техническое применение
- •59.Электрический ток в вакууме. Электронные лампы
- •60.Магнитная проницаемость вещества. Три класса магнитных веществ
- •61.Радиоактивность. Альфа- бета- и гамма распады. Закон радиоактивного распада
- •62.Биологическое действие радиоактивного излучения
- •63.Состав атомного ядра. Масса и энергия атомных ядер. Ядерные силы
- •64.Ядерные реакции. Энергетический выход ядерных реакций
- •65.Деление тяжелых атомных ядер. Ядерные реакторы. Ядерная энергетика и экологические проблемы
7.Электроемкость. Конденсаторы. Емкость плоского конденсатора. Энергия электрического поля
Конденсаторы. Для накопления значительных количеств разноименных электрических зарядов применяются конденсаторы.
Конденсатор — это система из двух проводников (обкладок), разделенных слоем диэлектрика, толщина которого мала по сравнению с размерами проводников. Если пластинам плоского конденсатора сообщить равные по модулю заряды противоположного знака, то напряженность электрического поля между пластинами будет в два раза больше, чем напряженность поля у одной пластины. Вне пластин напряженность электрического поля равна нулю, так как равные заряды разного знака на двух пластинах создают вне пластин электрические поля, напряженности которых равны по модулю, но противоположны по направлению.
Электрическая емкость конденсатора. Физическая величина, определяемая отношением заряда q одной из пластин конденсатора к напряжению между обкладками конденсатора, называется электроемкостью конденсатора:
При
неизменном расположении пластин
электроемкость конденсатора является
постоянной величиной при любом заряде
на пластинах.Единица электроемкости.
Единица электроемкости в международной
системе — фарад (Ф). Электроемкостью 1
Ф обладает такой конденсатор, напряжение
между обкладками которого равно 1 В при
сообщении обкладкам разноименных
зарядов по 1 Кл.
.
Электроемкость
плоского конденсатора. Напряженность
поля между двумя пластинами плоского
конденсатора равна сумме напряженностей
полей, создаваемых каждой из пластин:
.
Если на пластинах
площадью S находятся электрические
заряды + q и - q, то для модуля напряженности
поля между пластинами можем записать
Для однородного электрического поля связь между напряженностью и напряжением U дается выражением
,
где d — в данном случае расстояние между
пластинами, U — напряжение на конденсаторе.
Из
выражений получаем
Энергия
заряженного конденсатора равна работе
внешних сил, которую необходимо
затратить, чтобы зарядить конденсатор.
Процесс зарядки конденсатора можно
представить как последовательный
перенос достаточно малых порций заряда
Δq > 0 с одной обкладки на другую. При
этом одна обкладка постепенно заряжается
положительным зарядом, а другая –
отрицательным. Поскольку каждая порция
переносится в условиях, когда на
обкладках уже имеется некоторый заряд
q, а между ними существует некоторая
разность потенциалов. при переносе
каждой порции Δq внешние силы должны
совершить работу
Энергия
We конденсатора емкости C, заряженного
зарядом Q, может быть найдена путем
интегрирования этого выражения в
пределах от 0 до Q:
Формулу, выражающую энергию заряженного конденсатора, можно переписать в другой эквивалентной форме, если воспользоваться соотношением Q = CU.
8.Последовательное и параллельное соединение конденсаторов
Отдельные конденсаторы могут быть соединены друг с другом различным образом. При этом во всех случаях можно найти емкость некоторого равнозначного конденсатора, который может заменить ряд соединенных между собой конденсаторов. Для равнозначного конденсатора выполняется условие: если подводимое к обкладкам равнозначного конденсатора напряжение равно напряжению, подводимому к крайним зажимам группы конденсаторов, то равнозначный конденсатор накопит такой же заряд, как и группа конденсаторов.
Параллельное соединение конденсаторов
На рис. 1 изображено параллельное соединение нескольких конденсаторов. В этом случае напряжения, подводимые к отдельным конденсаторам, одинаковы: U1 = U2 = U3 = U. Заряды на обкладках отдельных конденсаторов: Q1 = C1U, Q2 = C2U, Q3 = C3U, а заряд, полученный от источника Q = Q1 + Q2 + Q3.
Общая емкость равнозначного (эквивалентного) конденсатора:
C = Q / U = (Q1 + Q2 + Q3) / U = C1 + C2 + C3,
т. е. при параллельном соединении конденсаторов общая емкость равна сумме емкостей отдельных конденсаторов.
При последовательном соединении конденсаторов на обкладках отдельных конденсаторов электрические заряды по величине равны: Q1 = Q2 = Q3 = Q
Действительно, от источника питания заряды поступают лишь на внешние обкладки цепи конденсаторов, а на соединенных между собой внутренних обкладках смежных конденсаторов происходит лишь перенос такого же по величине заряда с одной обкладки на другую (наблюдается электростатическая индукция), поэтому и на них по- являются равные и разноименые электрические заряды.
Напряжения между обкладками отдельных конденсаторов при их последовательном соединении зависят от емкостей отдельных конденсаторов: U1 = Q/C1, U1 = Q/C2, U1 = Q/C3, а общее напряжение U = U1 + U2 + U3. Общая емкость равнозначного (эквивалентного) конденсатора C = Q / U = Q / (U1 + U2 + U3), т. е. при последовательном соединении конденсаторов величина, обратная общей емкости, равна сумме обратных величин емкостей отдельных конденсаторов.