
- •1.Электрический заряд и его свойства. Дискретность. Элементарный электрический заряд. Закон сохранения электрического заряда.
- •2.Электрическое поле. Закон Кулона. Диэлектрическая проницаемость.
- •4.Работа в электростатическом поле. Потенциальная энергия поля. Потенциальность поля.
- •5.Потенциал. Разность потенциалов. Связь между напряжением и напряженностью
- •7.Электроемкость. Конденсаторы. Емкость плоского конденсатора. Энергия электрического поля
- •8.Последовательное и параллельное соединение конденсаторов
- •9.Электрический ток. Условия существования эл.Тока. Сила тока и плотность тока
- •10.Закон Ома для участка цепи. Сопротивление. Зависимость сопротивления проводника от температуры
- •11.Последовательное и параллельное сопротивление проводников
- •12.Работа и мощность электрического поля. Закон Джоуля-Ленца
- •13.Электродвижущая сила. Закон Ома для замкнутой цепи
- •14.Магнитное поле. Индукция магнитного поля. Магнитные силовые линии. Взаимодействие параллельных токов
- •15.Проводник с током в магнитном поле
- •16.Сила Лоренца. Движение заряженной частицы в магнитном поле
- •17.Магнитный поток. Явление электромагнитной индукции. Закон электромагнитной индукции и правило Ленца
- •18.Эдс индукции в движущихся проводниках в магнитном поле. Вихревое электрическое поле
- •19.Самоиндукция. Индуктивность. Эдс самоиндукции. Энергия магнитного поля
- •20.Колебательное движение. Гармонические колебания и их характеристики.
- •21.Пружинный и математический маятники. Энергетические превращения при их колебаниях.
- •22.Свободные электромагнитные колебания в колебательном контуре. Энергетические превращения в колебательном контуре. Формула Томпсона
- •23.Вынужденные электрические колебания. Переменный ток и его характеристики
- •24.Получение переменного тока при вращении витка в магнитном поле. Генератор переменного тока.
- •25.Передача и распределение электроэнергии. Устройство и принцип действия трансформатора
- •26.Электромагнитное поле. Электромагнитные волны и их свойства. Принципы радиосвязи. Радиолокация
- •27.Электромагнитная природа света. Скорость света. Зависимость между длиной световой волны и частотой электромагнитных колебаний
- •28.Интерференция света. Когерентность и монохроматичность
- •29.Дифракция света. Дифракционная решетка
- •30.Отражение и преломление света. Полное внутреннее отражение света
- •31.Дисперсия света. Разложение белого света призмой
- •32.Преломление света в линзах
- •33.Экспериментальные основы теории относительности. Постулаты Энштейна. Следствия из постулат
- •34.Зависимость массы от скорости в сто. Закон взаимосвязи массы и энергии
- •35.Гипотеза Планка. Фотон и его свойства. Корпускулярно-волновой дуализм
- •36.Внешний фотоэффект и его законы. Уравнение Энштейна для фотоэффекта
- •37.Опыты Резерфорда. Планетарная модель атома
- •38.Квантовые постулаты Бора. Оптические спектры. Излучение и поглощение энергии атомами. Строение атома водорода по Борну
- •39.Тепловое равновесие. Температура. Тепловое расширение тел. Измерение температуры
- •40. Идеальный газ. Уравнение состояния идеального газа
- •41.Газовые законы. Применение газов в технике
- •42.Внутренняя энергия идеального газа
- •43.Работа в термодинамике – ебала какая-то
- •44.Количество теплоты
- •45.Первое начало термодинамики. Применение 1 начала термодинамики к изопроцессам в идеальных газах
- •46.Второе начало термодинамики. Тепловые двигатели. Кпд тепловых двигателей. Цикл Карно. Максимальный кпд тепловых двигателей
- •47.Основные положения молекулярно-кинетической теории вещества, и их опытное доказательство. Диффузия и броуновское движение
- •48.Размеры и масса молекул. Постоянная Авогадро
- •49.Силы взаимодействия молекул. Особенности внутреннего строения газов, жидкостей и твердых тел
- •50.Давление газа. Основное уравнение молекулярно-кинетической теории
- •51.Насыщенный пар и его свойства. Кипение жидкости
- •52.Влажность воздуха. Абсолютная и относительная влажность. Приборы для измерения влажности
- •53.Поверхностное натяжение. Смачивание. Капиллярные явления
- •54.Характеристики твердого состояния вещества. Кристаллы. Строение и свойства кристаллических веществ. Аморфные тела
- •55.Деформация. Виды деформации. Механическое напряжение. Закон Гука. Диаграмма напряжений и ее характеристики
- •56.Электрический ток в полупроводниках. Собственная и примесная проводимости. Электронно-дырочный переход. Полупроводниковый переход
- •57.Электрический ток в электролитах. Законы Фарадея
- •58.Электрический ток в газах. Самостоятельный и несамостоятельный разряды. Различные типы самостоятельного разряда и их техническое применение
- •59.Электрический ток в вакууме. Электронные лампы
- •60.Магнитная проницаемость вещества. Три класса магнитных веществ
- •61.Радиоактивность. Альфа- бета- и гамма распады. Закон радиоактивного распада
- •62.Биологическое действие радиоактивного излучения
- •63.Состав атомного ядра. Масса и энергия атомных ядер. Ядерные силы
- •64.Ядерные реакции. Энергетический выход ядерных реакций
- •65.Деление тяжелых атомных ядер. Ядерные реакторы. Ядерная энергетика и экологические проблемы
37.Опыты Резерфорда. Планетарная модель атома
Для экспериментального исследования распределения положительного заряда, а значит, и массы внутри атома Резерфорд предложил в 1906 г. применить зондирование атома с помощью α-частиц. Их масса примерно в 8000 раз больше массы электрона, а положительный заряд равен по модулю удвоенному заряду электрона. Скорость α-частиц очень велика: она составляет 1/15 скорости света. Этими частицами Резерфорд бомбардировал атомы тяжелых элементов. Электроны вследствие своей малой массы не могут заметно изменить траекторию α-частицы и не в состоянии заметно изменить его скорость. Рассеяние (изменение направления движения) α-частиц может вызвать только положительно заряженная часть атома. Таким образом, по рассеянию α-частиц можно определить характер распределения положительного заряда и массы внутри атома. Радиоактивный препарат, например радий, помещался внутри свинцового цилиндра 1, вдоль которого был высверлен узкий канал. Пучок α-частиц из канала падал на тонкую фольгу 2 из исследуемого материала (золото, медь и пр.). После рассеяния α-частицы попадали на полупрозрачный экран 3, покрытый сульфидом цинка. Столкновение каждой частицы с экраном сопровождалось вспышкой света (сцинтилляцией), которую можно было наблюдать в микроскоп 4. Весь прибор размещался в сосуде, из которого был откачан воздух.
При распределении по всему атому положительный заряд не может создать достаточно интенсивное электрическое поле, способное отбросить а-частицу назад. Максимальная сила отталкивания определяется по закону Кулона:
где qα — заряд α-частицы; q — положительный заряд атома; r — его радиус; k — коэффициент пропорциональности. Напряженность электрического поля равномерно заряженного шара максимальна на поверхности шара и убывает до нуля по мере приближения к центру. Поэтому, чем меньше радиус r, тем больше сила, отталкивающая α-частицы. Эта теория кажется совершенно необходимой для объяснения опытов по рассеиванию а-частиц. Но на основе этой модели нельзя объяснить факт существования атома, его устойчивость. Ведь движение электронов по орбитам происходит с ускорением, причем весьма немалым. Ускоренно движущийся заряд по законам электродинамики Максвелла должен излучать электромагнитные волны с частотой, равной частоте его обращения вокруг ядра. Излучение сопровождается потерей энергии. Теряя энергию, электроны должны приближаться к ядру, подобно тому как спутник приближается к Земле при торможении в верхних слоях атмосферы. Как показывают строгие расчеты, основанные на механике Ньютона и электродинамике Максвелла, электрон за ничтожно малое время должен упасть на ядро. Атом должен прекратить свое существование.
В действительности ничего подобного не происходит. Отсюда следует, что к явлениям атомных масштабов законы классической физики неприменимы. Резерфорд создал планетарную модель атома: электроны обращаются вокруг ядра, подобно тому как планеты обращаются вокруг Солнца. Эта модель проста, обоснована экспериментально, но не позволяет объяснить устойчивость атома.