
- •Собственная и примесная проводимость полупроводников. Электропроводность полупроводников.
- •4. Диоды. Классификация. Отличие между p-n-переходом и диодом. Пробой диодов.
- •5. Выпрямительные диоды.
- •6. Стабилитроны
- •7. Варикапы, туннельные и обращенные диоды.
- •8. Диоды Шотки. Переход металл – полупроводник.
- •9. Туннельные и обращенные диоды – смотри вопрос №7
- •10. Выпрямители.
- •11. Ограничители.
- •12. Стабилизатор параметрический.
- •15. Эквивалентные схемы полевого транзистора.
- •16. Эффекты поля
- •21. Эквивалентные схемы полевого транзистора (смотри вопрос 15)
- •22. Биполярный транзистор. Принцип действия. Уравнение токораспределения.
- •25. Уравнение токораспределения для схемы с общим эмиттером (β).
- •26. Статические характеристики транзистора с общей базой.
- •27. Статические характеристики транзистора с общим эмиттером.
- •30. Транзистор как линейный четырехполюсник
- •33. Связь параметров физической эквивалентной схемы с h-параметрами
- •36.Работа транзистора с нагрузкой. Рабочая область.
- •37. Работа транзистора в импульсном режиме. Эквивалентные схемы, параметры.
- •38. Частотные свойства транзисторов
- •39. Динисторы
- •40. Тринисторы
- •41. Вакуумный фотоэлемент
- •42. Ионный фотоэлемент
- •43. Фотоэлектронный усилитель
- •44. Фоторезистор
- •45. Фотодиод
- •46. Фототранзистор
- •47. Фототиристор
- •49. Оптоэлектроника.
- •50. Оптроны
- •51. Оптрон с оптической связью
- •52. Оптрон с электрической связью (см. 51)
- •53. Микроэлектроника
- •54. Схемы задания рабочего режима для биполярных транзисторов в различных схемах включения.
- •55. Схемы задания рабочего режима для полевых транзисторов
- •56. Усилители. Параметры и характеристики усилителей.
- •58. Шумы в электронных схемах
- •59. Рачет рабочей точки стандартных усилительных каскадов на бт.
- •61. Обратные связи в усилителях.
- •62. Влияние обратной связи на параметры и характеристики усилителей
- •63. Термостабилизация в усилительных каскадах
- •64. Обратная связь в многокаскадных усилителях ( или см. 61)
- •65. Однокаскадный усилитель rc-типа на бт с общим эмиттером (построение эквивалентной схемы)
- •66. Однокаскадный усилитель rc-типа на бт с общим эмиттером (анализ параметров по переменному току)
- •67. Усилители постоянного тока. Назначение, параметры, основные особенности.
- •68. Методы борьбы с дрейфом нуля. Местные отрицательные обратные связи.
- •69. Методы борьбы с дрейфом нуля. Балансные (мостовые схемы).
- •70. Дифференциальный каскад.
- •71. Метод модуляции-демодуляции.
- •72. Комбинированные методы борьбы с дрейфом нуля.
- •73. Операционные усилители
- •74. Инвертирующий усилитель
- •75. Неинвертирующий усилитель
- •76. Применение оу для выполнения нелинейных операций
- •77. Применение оу для выполнения математических операций
- •78. Электронные ключи. Параметры и характеристики
- •79. Ключ на биполярном транзисторе
- •80. Ключ на переключателе тока
- •81. Ключи на полевых транзисторах.
- •82. Комплементарный ключ (кмдп)
- •83. Логические элементы. Основные параметры и особенности
- •84. Элемент ттл со сложным инвертором.
- •87. Кмоп-логика
- •88. Триггерная ячейка.
- •89. Триггер с раздельными входами
- •90. Интегральные триггеры
6. Стабилитроны
Стабилитрон — полупроводниковый диод, предназначенный для поддержания напряжения источника питания на заданном уровне. По сравнению с обычными диодами имеет достаточно низкое регламентированное напряжение пробоя (при обратном включении) и может поддерживать это напряжение на постоянном уровне при значительном изменении силы обратного тока. Материалы, используемые для создания p-n перехода стабилитронов, имеют высокую концентрацию легирующих элементов (примесей). Поэтому, при относительно небольших обратных напряжениях в переходе возникает сильное электрическое поле, вызывающее его электрический пробой, в данном случае являющийся обратимым (если не наступает тепловой пробой вследствие слишком большой силы тока).
У стабилитронов до напряжения 5,6 вольт преобладает туннельный пробой с отрицательным температурным коэффициентом, выше 5,6 вольт доминирующим становится лавинный пробой с положительным температурным коэффициентом. При напряжении, примерно равном 5,6 вольт, оба эффекта уравновешиваются, поэтому выбор такого напряжения стабилизации является одним из способов снижения его зависимости от температуры.
Режим электрического пробоя p-n-перехода находит практическое применение для стабилизации напряжения. Такие приборы называются стабилитронами. Для изготовления стабилитронов используется кремний. Вольт-амперная характеристика стабилитрона приведена на рисунке.
Для
работы используется обратная ветвь,
где значительному изменению тока
соответствует малое изменение
напряжения. Точка А соответствует
устойчивому пробою и определяет
величину минимального тока Imin. После
точки А ток резко возрастает и допустимая
величина его Imax ограничивается лишь
мощностью рассеяния P max:
где
– напряжение стабилизации.
Рабочую точку на характеристике выбирают посередине рабочего участка, т.е.
Рабочее напряжение стабилитрона, являющееся напряжением пробоя p-n-перехода, зависит от концентрации примесей и лежит в пределах 4 – 200 В.
Схема
простейшего стабилизатора с использованием
стабилитрона показана на рисунке.
Резистор r является гасящим и одновременно
задаёт рабочую точку. Величина
сопротивления r должна быть значительно
больше величины дифференциального
сопротивления стабилитрона.
При изменении температуры напряжение стабилизации может изменяться.
Параметры стабилитронов:
Напряжение стабилизации Uст. ном – падение напряжения на стабилитроне
при
номинальном значении тока Iст. Минимальный
и максимальный ток стабилизации Iст
min, Iст max. Дифференциальное сопротивление
.
Статическое сопротивление в рабочей
точке
.
Коэффициент качества стабилитрона
.
Температурный
коэффициент напряжения (ТКН) стабилизации – отношение относительного изменения напряжения стабилизации к изменению температуры
.
7. Варикапы, туннельные и обращенные диоды.
Варикапами называются полупроводниковые диоды, в которых используется зависимость барьерной ёмкости p-n-перехода от обратного напряжения.
Варикапы применяют в устройствах управления частотой колебательного контура, в параметрических схемах усиления, деления и умножения частоты, в схемах частотной модуляции, управляемых фазовращателях и др.
В
ольт-фарадная
характеристика
варикапа:
Схема замещения:
Варикапы в основном используются на высоких и сверхвысоких частотах, поэтому важную роль играет сопротивление потерь rб. Для его уменьшения необходимо выбирать материал с малым удельным сопротивлением. Используются кремний, германий.
При отсутствии внешнего напряжения в p-n-переходе существуют потенциальный барьер и внутреннее электрическое поле. Если к диоду приложить обратное напряжение, то высота этого потенциального барьера увеличится. Внешнее обратное напряжение отталкивает электроны в глубь n-области, в результате чего происходит расширение обеднённой области p-n-перехода, которую можно представить как простейший плоский конденсатор, в котором обкладками служат границы области. В таком случае, в соответствии с формулой для ёмкости плоского конденсатора, с ростом расстояния между обкладками (вызванной ростом значения обратного напряжения) ёмкость p-n-перехода будет уменьшаться. Это уменьшение ограничено лишь толщиной базы, далее которой переход расширяться не может
Принцип работы туннельного диода (TД) основан на явлении туннельного эффекта в p-n-переходе, образованном вырожденными полупроводниками. Это приводит к появлению на вольт-амперной характеристике участка с отрицательным дифференциальным сопротивлением при прямом напряжении.
Концентрация
примесей в p- и n- областях выбирается
порядка
,
следствием чего является малая толщина
перехода (порядка 0,01 мкм). Локальные
уровни примесей образуют в вырожденных
полупроводниках сплошную зону. Уровни
Ферми
располагаются соответственно в
валентной зоне p-области и в зоне
проводимости n-области. В состоянии
термодинамического равновесия зона
проводимости n-полупроводника и
валентная зона p-полупроводника
перекрываются на величину
.
Известно, что частица, имеющая энергию, недостаточную для преодоления потенциального барьера, может пройти сквозь него, если с другой стороны этого барьера имеется свободный энергетический уровень, который она занимала перед барьером. Это явление называется туннельным эффектом. Чем уже потенциальный барьер и чем меньше его высота, тем больше вероятность туннельного перехода. Туннельный переход совершается без затраты энергии.
Вольт-амперная характеристика туннельного диода:
Таким образом, туннельный диод обладает отрицательным дифференциальным сопротивлением в некотором диапазоне прямых напряжений, что позволяет использовать его для генерации и усиления колебаний, а также в переключающих схемах.
Разновидностью туннельных диодов являются обращенные диоды, изготовляемые на основе полупроводника с концентрациями примесей в р- и n - областях диода, меньших, чем в туннельных, но больших, чем в обычных выпрямительных диодах.
Вольт-амперная характеристика обращенного диода представлена:
П
рямая
ветвь ВАХ обращенного диода аналогична
прямой ветви обычного выпрямительного
диода, а обратная ветвь аналогична
обратной ветви ВАХ туннельного диода,
т.к. при обратных напряжениях происходит
туннельный переход электронов из
валентной зоны р-области в зону
проводимости n-области и при малых
обратных напряжениях (десятки милливольт)
обратные токи оказываются большими.
Таким образом, обращенные диоды
обладают выпрямляющим эффектом, но
проводящее направление в них соответствует
обратному включению, а запирающее –
прямому включению.