
- •1 Разграфка и номенклатура топографических карт. Стандартный масштабный ряд. Колонна, широтный ряд.
- •2 Математическая основа топографических карт.
- •3 Предмет Топография.
- •4 Форма и размеры Земли.
- •5 Системы координат в топографии. Географическая система координат.
- •Географические (Астрономические и геодезические)
- •6 Проекция Гауса.
- •7 Система плоских прямоугольных координат: определение, оси.
- •8 Единицы измерения. Рассчет ведомости замкнутого теодолитного хода.
- •9 Решение задач по картам. (определение: координат точек,дтн линий, углов ориентирования)
- •11 Высоты точек земной поверхности: абсолютные, условные относительные. Методы их определения.
- •12 Прямая и обратная геодезическая задачи: цель, порядок решения
- •13) Рельеф.
- •14) Топографические карты и планы.
- •1.4. Для карт устанавливается следующий масштабный ряд: 1:2000, 1:5000, 1:10000, 1:25000, 1:50000, 1:100000, 1:200000, 1:500000 и 1:1000000.
- •15)Определение площадей по карте.
- •3) Аналитический способ. Применяется, если известны координаты вершин фигуры.
- •5) Взвешивание. Фигуру рисуют на калиброванной бумаге, то есть на такой бумаге, масса одного квадратного сантиметра которой известен. Затем фигура вырезается и взвешивается.
- •16) Условные знаки, генерализация.
- •17 Построение продольного профиля местности на карте.
- •18 Стр 28. Толстый учебник.
- •19 Полярные координаты.
- •20 Ошибки измерений. Свойства ошибок измерений.
- •1) Грубые. Возникают вследствие неисправности прибора, небрежности наблюдателя или аномального влияния внешней среды. Их можно устранить с помощью контроля работ.
- •21 Понятие о точности измерений. Равноточные и неравноточные измерения. Критерии.
- •При вычислениях не нужно учитывать знаки отдельных погрешностей;
- •22 Дистанционные съемки. Дешифрирование снимков. Понятия об обновлении карт.
- •23 Создание планового съемочного обоснования. Теодолитные ходы.
- •24 Барометрическое нивелирование.
- •2) Микробарометры омб-1, омб-3п, мб-63, мбнп, м-111.
- •25) Съемка местности. Понятие, работы, классификация.
- •26 Приборы и принадлежности для геометрического нивелирования. Нивелир нз. Поверки.
- •1) Нивелиры с уровнем при зрительной трубе (н-05, н-3, н-10);
- •2)Нивелиры с компенсатором (н-05к, н-зк, н-10к).
- •27 Тахеометрическая съемка. Способы съемки, ведение журнала, абрис, контроль.
- •28 Государственная высотная геодезическая сеть.
- •30 Современные электронные дальномеры. Порядок измерения расстояний.
- •31 Виды и способы топографических съемок.
- •32 Геометрическое нивелирование.
- •33) Дальномеры. Измерение наклонных линий. Определение недоступных расстояний.
- •Р ис. 57. Принцип измерения расстояния оптическими дальномерами:
- •Углом; в — с постоянной базой
- •34 Тахеометрическая съемка. Сущность, камеральные работы.
- •35) Приведение наклонных линий к горизонту. Измерение углов наклона. Эклиметр. Точность.
- •37 Нивелирные ходы
- •Обработка результатов геометрического нивелирования Математическая обработка включает два вида работ: вычислительную и графическую (построение профиля).
- •38) Классификация теодолитов. 2т30. Штатив, ориентир-буссоль. Поверки теодолитов.
- •Высокоточные т05 и т1, предназначенные для измерения углов в триангуляции и полигонометрии 1-го и 2-го классов.
- •Точные т2 — для измерения углов в триангуляции и полигонометрии 3-го и 4-го классов; т5 — для измерения углов в триангуляционных сетях и полигонометрии 1-го и 2-го разрядов.
- •Технические т15, тзо и т60 — для измерения углов в теодолитных и тахеометрических ходах и съемочных сетях, а также для выполнения разбивочных работ на местности.
- •Геодезические (собственно теодолиты) — предназначены для измерения горизонтальных и вертикальных углов.
- •1) Грубые. Возникают вследствие неисправности прибора, небрежности наблюдателя или аномального влияния внешней среды. Их можно устранить с помощью контроля работ.
- •40. Теодолитная съемка и ее сущность. Способы съемки ситуации. Составление контурного плана участка.
- •40) Теодолитная съемка.
- •Разомкнутый ход, начало и конец которого опираются на пункты геодезического обоснования;
- •Замкнутый ход (полигон) — сомкнутый многоугольник, обычно примыкающий к пункту геодезического обоснования;
- •Висячий ход, один из концов которого примыкает к пункту геодезического обоснования, а второй конец остается свободным.
- •41 Глазомерная съемка.
- •42)Буссольная съемка
- •43) Государственная плановая геодезическая сеть-
- •44 Измерение длин линий на местности. Непосредственный способ.
- •45)Спутниковые методы определения координат.
- •46 Техника безопасности
- •5.При работе с электронными геодезическими приборами в полевых условиях запрещается:
5 Системы координат в топографии. Географическая система координат.
координаты — величины, характеризующие расположение искомых точек относительно исходных плоскостей, линий и точек выбранной системы координат.
Географические (Астрономические и геодезические)
Географи́ческие координа́ты определяют положение точки на земной поверхности или, более широко, в географической оболочке.
В астрономической системе координаты точек определяются относительно направлений отвесных линий в точках земной поверхности. Астрономические координаты могут быть измерены техническими средствами и методами геодезической астрономии.
Астрономическая широта – угол, образованный отвесной линией в данной точке и плоскостью, перпендикулярной оси вращения Земли. (0-(+/-900))
Астрономическая долгота – двугранный угол между плоскостями астрономических мередианов данной точки и начального мередиана. Астрономический мередиан образуется сечением земной поверхности плоскостью, проходящей через отвесную линию в данной точке параллельно оси вращения Земли. (0-(+/-1800))
Геодезические координаты (В,L) – угловые величины, определяющие положение точки на земном эллипсоиде относительно экватора и начального мередиана.
Геодезическая широта (В) – угол между плоскостью экватора и нормалью в данной точке на земном эллипсоиде. (0-(+/-900))
Геодезическая долгота (L) – двугранный угол между плоскостью начального мередиана и плоскостью мередиана данной точки на земном эллипсоиде. (0-(+/-1800))
Географическая система координат является единой для всего земного шара. Она широко применяется для решения задач астрономии, сферической геометрии, картографии и т.д., охватывающих большие пространства.
Географические координаты на карте определяют по рамкам листа, подписанным в углах, и залитым штрихам (минутным делениям). Географические координаты даются через одну минуту на рамках карт масштабом от 1:10 000 до 1 : 200 000 и через 5 минут на рамках карт масштабом 1 : 500 000 и 1 : 1 000 000.
С 1960 г. на рамках карт масштабов от 1 : 25 000 до 1 : 100 000 минутное деление дополнительно разбито на шесть равных частей по 10".
Для определения географических координат точки на карте (например, точки Б на рис. 22) необходимо провести меридиан и параллель через концы ближайших к точке одноминутных делений рамки. Затем оценивают на глаз или измеряют доли минуты по долготе и широте до интересующей нас точки и добавляют их к основным отсчетам.
6 Проекция Гауса.
В общегосударственной системе плоских прямоугольных координат положение точек земной поверхности определяется прямоугольными координатами х, у на плоскости, на которую они проектируются по закону равноугольной поперечно-цилиндрической проекции Гаусса — Крюгера. Данная проекция была разработана немецким ученым К. Гауссом в 1825— 1830 гг.; разработку рабочих формул для вычислений координат в этой проекции выполнил в 1912 г. Л. Крюгер. Сущность проекции Гаусса - Крюгера заключается в следующем. Земной эллипсоид делится меридианами через 6° по долготе на 60 зон, простирающихся от полюса до полюса.
Нумерация зон ведется с запада на восток от Гринвичского меридиана, который является западной границей первой зоны. Средний меридиан каждой зоны называется осевым.
Долгота осевого меридиана любой зоны Восточного полушария определяется по формуле L = 6°N- 3, где N — номер 6-градусной зоны.
Осевой меридиан зоны - ось абсцисс (х); ось ординат (у) - экватор. Чтобы избежать отрицательных значений ординат, в каждой зоне ось абсцисс (х) условно переносят на 500 км к западу от осевого меридиана
Проектирование каждой зоны в отдельности на поверхность цилиндра (плоскость) выполняют с соблюдением следующих условий: — изображения малых фигур на плоскости проекции и на сфере (эллипсоиде) должны быть подобными (равноугольными); . осевой меридиан зоны и экватор изображаются на плоскости взаимно перпендикулярными линиями;
масштаб изображения вдоль осевого меридиана равен единице; с удалением от осевого меридиана он увеличивается, но в каждой точке остается постоянным во всех направлениях. Выполнение первого условия вызывает искажение (увеличение)
длин линий на плоскости проекции, поэтому вся зона на поверхности эллипсоида отображается на плоскости в несколько расширенном виде (см. рис. 12).
В результате такого проектирования получают изображение поверхности земного шара (эллипсоида) в виде 60 зон, примыкающих друг к другу на экваторе (рис. 13). Каждая из этих зон представляет собой прямоугольную систему координат со своим началом координат —точкой пересечения экватора с осевым меридианом.
+ рисунок