- •Билет№1
- •Понятие коммутации цепи. Виды коммутации.
- •2. Четырехполюсники. Понятие, классификация. Обратимость четырехполюсников.
- •Классификация четырехполюсников
- •Режим обратного питания четырехполюсников
- •Билет№2
- •1.Причины возникновения переходного процесса.
- •2.Система уравнений четырехполюсника. Понятие симметрии четырехполюсника. Основные уравнения четырехполюсников
- •3.3. Режим обратного питания четырехполюсников
- •Симметричный четырехполюсник
- •Билет№3
- •1.Составление дифференциальных уравнений цепи. Принципы решения дифференциальных уравнений. Классический метод. Классический метод расчета
- •Классический метод расчёта переходных процессов
- •2.Виды соединений нескольких четырехполюсников. Соединения четырехполюсников
- •3.13.1. Каскадное соединение
- •3.13.2. Параллельное соединение
- •3 .11.3. Последовательное соединение
- •Билет№4
- •1.Начальные условия. Законы коммутации.
- •Общая характеристика переходных процессов
- •2.Четырехполюсники в форме ||z|| параметров.
- •Билет№5
- •1.Классический метод расчета переходных процессов.
- •К лассический метод расчета
- •2.Четырехполюсники в форме ||а|| параметров. Условие его обратимости.
- •Определение а–параметров с помощью режимов короткого замыкания и холостого хода
- •Билет№6
- •1.Подключение цепи r,l к источнику энергии. Время переходного процесса.
- •2.Характеристические параметры четырехполюсника: согласованные сопротивления, мера передачи. Характеристические параметры четырехполюсника
- •Билет№7
- •1.Замыкание цепи r,l с накопленной энергией на себя. Время переходного процесса.
- •2.Четырехполюсник в форме ||а|| параметров в гиперболических функциях. Уравнения четырехполюсника в гиперболических функциях
- •Билет№8
- •1.Подключения цепи r,c к источнику энергии. Время переходного процесса.
- •2.Определение параметров эквивалентного четырехполюсника при последовательном, параллельном и каскадном соединении нескольких четырехполюсников.
- •Билет№9
- •1.Замыкание цепи r,c с накопленной энергией на себя. Время переходного процесса.
- •2.Определение параметров эквивалентного четырехполюсника при смешанном соединении нескольких четырехполюсников. . Эквивалентные схемы замещения четырехполюсника
- •Билет№10
- •1.Особенности расчета переходных процессов в цепях второго порядка классическим методом при действительных корнях характеристического уравнения.
- •4.2.6.1. Разряд емкости на цепь rl
- •Билет№11
- •1.Особенности расчета переходных процессов в цепях второго порядка классическим методом при комплексно-сопряженных корнях характеристического уравнения.
- •2.Вторичные параметры четырехполюсника. Примеры их нахождения. Билет№12
- •1.Подключения цепи r,l,c к источнику энергии. Время переходного процесса.
- •Переходные процессы при подключении последовательной r-l-c-цепи к источнику напряжения
- •2.Электрические фильтры понятие и классификация.
- •Билет№13
- •1.Замыкание цепи r,l,c с накопленной энергией на себя. Время переходного процесса.
- •2.Полоса пропускания и полоса задержки электрических фильтров. Граничные частоты пропускания реактивных фильтров.
Билет№1
Понятие коммутации цепи. Виды коммутации.
Законы коммутации
Название закона |
Формулировка закона |
Первый закон коммутации (закон сохранения потокосцепления) |
Магнитный поток, сцепленный с катушками индуктивности контура, в момент коммутации сохраняет то значение, которое имел до коммутации, и начинает изменяться именно с этого значения: . |
Второй закон коммутации (закон сохранения заряда) |
Электрический заряд на конденсаторах, присоединенных к любому узлу, в момент коммутации сохраняет то значение, которое имел до коммутации, и начинает изменяться именно с этого значения: . |
Доказать законы коммутации можно от противного: если допустить обратное, то получаются бесконечно большие значения и , что приводит к нарушению законов Кирхгофа.
На практике, за исключением особых случаев (некорректные коммутации), допустимо использование указанных законов в другой формулировке, а именно:
первый закон коммутации – в ветви с катушкой индуктивности ток в момент коммутации сохраняет свое докоммутационное значение и в дальнейшем начинает изменяться с него: .
второй закон коммутации – напряжение на конденсаторе в момент коммутации сохраняет свое докоммутационное значение и в дальнейшем начинает изменяться с него: .
Необходимо подчеркнуть, что более общей формулировкой законов коммутации является положение о невозможности скачкообразного изменения в момент коммутации для схем с катушкой индуктивности – потокосцеплений, а для схем с конденсаторами – зарядов на них. В качестве иллюстрации сказанному могут служить схемы на рис. 2, переходные процессы в которых относятся к так называемым некорректным коммутациям (название произошло от пренебрежения в подобных схемах малыми параметрами, корректный учет которых может привести к существенному усложнению задачи).
Действительно, при переводе в схеме на рис. 2,а ключа из положения 1 в положение 2 трактование второго закона коммутации как невозможность скачкообразного изменения напряжения на конденсаторе приводит к невыполнению второго закона Кирхгофа . Аналогично при размыкании ключа в схеме на рис. 2,б трактование первого закона коммутации как невозможность скачкообразного изменения тока через катушку индуктивности приводит к невыполнению первого закона Кирхгофа . Для данных схем, исходя из сохранения заряда и соответственно потокосцепления, можно записать:
Зависимыми начальными условиями называются значения остальных токов и напряжений, а также производных от искомой функции в момент коммутации, определяемые по независимым начальным условиям при помощи уравнений, составляемых по законам Кирхгофа для . Необходимое число начальных условий равно числу постоянных интегрирования. Поскольку уравнение вида (2) рационально записывать для переменной, начальное значение которой относится к независимым начальным условиям, задача нахождения начальных условий обычно сводится к нахождению значений этой переменной и ее производных до (n-1) порядка включительно при .
П ример. Определить токи и производные и в момент коммутации в схеме на рис. 3, если до коммутации конденсатор был не заряжен.
В соответствии с законами коммутации
и .
На основании второго закона Кирхгофа для момента коммутации имеет место
,
откуда
и .
Для известных значений и из уравнения
определяется .
Значение производной от напряжения на конденсаторе в момент коммутации (см. табл. 1)
.