
- •33. Основные типы полупроводниковых диодов.
- •32. Применение полупроводниковых диодов для выпрямления переменного тока.
- •30. Электронно-дырочный переход при обратном напряжении
- •29. Электронно-дырочный переход при прямом напряжении.
- •28. Электронно-дырочный переход при отсутствии внешнего напряжения
- •27. Диффузия носителей заряда в полупроводниках
- •26. Примесная электропроводность полупроводников.
- •25. Собственная электронная и дырочная электропроводимости
- •20. Мощность в цепи переменного тока. Активная мощность (p) Единица измерения — ватт (w, Вт).
- •Реактивная мощность (q)
- •Полная мощность (s). Единица полной электрической мощности — вольт-ампер (V*a, в*а)
- •19. Резонанс токов в электрических цепях.
- •18. Резонанс напряжений в электрических цепях.
- •17. Цепь переменного тока с параллельным соединением активного, индуктивного и емкостного сопротивлений
- •16. Цепь переменного тока с последовательным соединением активного, индуктивного и емкостного сопротивлений
- •15.Цепь переменного тока с конденсатором.
- •14. Цепи переменного тока с резистивными и ндуктивными эл.
- •13. Выражение физических величин комплексными числами.
- •12. Действующее и среднее значение силы переменного тока.
- •11. Цепи переменного тока.
- •1 Основные понятия, определения и законы
- •2 Схемы электрических цепей их элементы и изображение
- •3 Исследование электрических цепей с использованием законов Кирхгофа
- •4 Расчет методом контурных токов
- •5 Расчет методом наложения
- •7 Метод узловых напряжений
- •8 Расчет методом эквивалентного генератора
17. Цепь переменного тока с параллельным соединением активного, индуктивного и емкостного сопротивлений
Электрические цепи, в которых электрические величины (токи, напряжения и ЭДС) изменяются с течением времени по периодическому закону, принято называть цепями переменного тока.
Oпределение: Переменными называют токи и напряжения, изменяющиеся во времени, по величине и направлению. Их величина в любой момент времени называется мгновенным значением. Обозначаются мгновенные значения малыми буквами: i, u, e, p.
Токи, значения которых повторяются
через равные промежутки времени,
называются периодическими. Наименьший
промежуток времени, через который
наблюдаются их повторения, называется
периодом и обозначается буквой Т.
Величина, обратная периоду, называется
частотой, т.е.
и
измеряется в герцах (Гц). Величина
называется
угловой частотой переменного тока, она
показывает изменение фазы тока в единицу
времени и измеряется в радианах, деленных
на секунду
Максимальное
значение переменного тока или напряжения
называется амплитудой. Оно обозначается
большими буквам с индексом ''m'' (например,
Im). Существует также понятие,
действующего значения переменного тока
(I). Количественно оно равно:
что для синусоидального характера изменения тока соответствует. Переменный ток можно математически записать в виде:
Здесь индекс выражает начальную фазу. Если синусоида начинается в точке пересечения осей координат, то = 0, тогда
Начальное значение тока может быть слева или справа от оси ординат. Тогда начальная фаза будет опережающей или отстающей.
Р
ассмотрим
цепь параллельного включения конденсатора
и катушки, обладающей активным
сопротивлением и индуктивностью (рис.
1.4.1).
В этой схеме общим параметром для двух ветвей является напряжение U. Первая ветвь - индуктивная катушка - обладает активным сопротивлением R и индуктивностью L. Результирующее сопротивление Z1 и ток I1 определяются по формуле:
,
где
Поскольку сопротивление этой ветви
комплексное, то ток в ветви отстает по
фазе от напряжения на угол
.
Покажем это на векторной диаграмме (рис. 1.4.2).
Спроецируем вектор тока I1 на оси координат. Горизонтальная составляющая тока будет представлять собой активную составляющую I1R, а вертикальная - I1L. Количественные значения этих составляющих будут равны:
где
Во вторую ветвь включен конденсатор. Его сопротивление
Этот ток опережает по фазе напряжение на 90°. Для определения тока I в неразветвленной части цепи воспользуемся формулой:
<>
Его значение можно получить и графическим путем, сложив векторы I1 и I2 (рис.1.4.3) Угол сдвига между током и напряжением обозначим буквой . Здесь возможны различные режимы в работе цепи. При = +90° преобладающим будет емкостный ток, при = -90° - индуктивный. Возможен режим, когда = 0, т.е. ток в неразветвленной части цепи I будет иметь активный характер. Произойдет это в случае, когда I1L = I2, т.е. при равенстве реактивных составляющих тока в ветвях.
Н
а
векторной диаграмме это будет выглядеть
так (рис. 1.4.4):
Такой режим называется резонансом токов. Также как в случае с резонансом напряжений, он широко применяется в радиотехнике. Рассмотренный выше случай параллельного соединения R, L и C может быть также проанализирован с точки зрения повышения cos для электроустановок. Известно, что cos является технико-экономическим параметром в работе электроустановок. Определяется он по формуле:
,
где
Р - активная мощность электроустановок, кВт, S - полная мощность электроустановок, кВт. На практике cos определяют снятием со счетчиков показаний активной и реактивной энергии и, разделив одно показание на другое, получают tg . Далее по таблицам находят и cos. Чем больше cos, тем экономичнее работает энергосистема, так как при одних и тех же значениях тока и напряжения (на которые рассчитан генератор) от него можно получить большую активную мощность. Снижение cos приводит к неполному использованию оборудования и при этом уменьшается КПД установки. Тарифы на электроэнергию предусматривают меньшую стоимость 1 киловатт-часа при высоком cos, в сравнении с низким. К мероприятиям по повышению cos относятся: - недопущение холостых ходов электрооборудования, - полная загрузка электродвигателей, трансформаторов и т.д. Кроме этого, на cos, положительно сказывается подключение к сети статических конденсаторов.