
- •1)Законы внешнего фотоэффекта. Красная граница фотоэффекта.
- •2)Молекулы.Химическиесвязи.Понятие об энергетических уровнях.
- •3)Поляризация света.ЗаконМалюса
- •5) Тепловое излучение и его характеристики
- •6)Металлы, диэлектрики, полупроводники позоной территории
- •7) Эффект Комптона
- •8) Принцип Паули. Распределение электронов в атоме по состояниям
- •10) Виды радиоактивного распада
- •11) Интерференция света. Когерентность и мнонхромность волн
- •14)Временное уравнение Шредингера.
- •15) Интерференция света. Кольца ньютона
- •17)Естественный и поляризованный свет.Двойноелучепреломление.Призма Николя
- •19)Инт-ия света в тонких пленках, полосы равного наклона.
- •20)Виды радиоактивного распада.Свойства радиоактивных превращений
- •22)Контакт электронного и дырочного полупроводников
- •23)Свойства лазерного излучения.
- •24)Классификация элементарных частиц
- •25)Дифракция Фраунгофера на дифракционной решетке
- •26)Решение уравнения Шрёдингера
- •28)Понятие о зонной теории твёрдых тел
- •35)Поляризация света при отражении. Закон Брюстера.
- •40)Закон радиоактивного распада
- •41)Принцип получения рентгеновских лучей
- •47)Дифракцияволн, дифракция на одной щели.
- •48)Закономерности альфа-распада
47)Дифракцияволн, дифракция на одной щели.
(лат. diffractus — буквально разломанный, переломанный, огибание препятствия волнами) — явление, которое проявляет себя как отклонение от законов геометрической оптики при распространении волн. Она представляет собой универсальное волновое явление и характеризуется одними и теми же законами при наблюдении волновых полей разной природы.
Дифракция
неразрывно связана с явлением
интерференции.
Более того, само явление дифракции
зачастую трактуют как случай интерференции
ограниченных в пространстве волн
(интерференция вторичных
волн).
Общим свойством всех эффектов дифракции
является зависимость степени её
проявления от соотношения между длиной
волны
и
характерным размером неоднородностей
среды
,
либо неоднородностей структуры самой
волны. Наиболее заметно они проявляются
при размерах неоднородностей, сравнимых
с длиной волны.
В качестве примера рассмотрим дифракционную картину возникающую при прохождении света через щель в непрозрачном экране. Мы найдём интенсивность света в зависимости от угла в этом случае.
Математическое представление принципа Гюйгенса используется для написания исходного уравнения.
Рассмотрим
монохроматическую плоскую волну с
амплитудой
с
длиной волны λ падающую на экран с щелью,
ширина которой a.
Если разрез находится в плоскости x′-y′, с центром в начале координат, тогда может предполагаться, что дифракция производит волну ψ на расстоянии r, которая расходится радиально и вдалеке от разреза можно записать:
48)Закономерности альфа-распада
В настоящее время известно более двухсот a-активных ядер, главным образом тяжелых (А>200,Z>82). Только небольшая группа a-активных ядер приходится на область сА= 140 ¸160 (редкие земли). a-Распад подчиняется правилу смещения (256.4). Примером a-распада служит распад изотопа урана 238U с образованием Th:
Скорости вылетающих при распаде a-частиц очень велики и колеблются для разных ядер в пределах от 1,4×107 до 2×107 м/с, что соответствует энергиям от 4 до 8,8 МэВ. Согласно современным представлениям, a-частицы образуются в момент радиоактивного распада при встрече движущихся внутри ядра двух протонов и двух нейтронов.
a-Частицы, испускаемые конкретным ядром, обладают, как правило, определенной энергией. Более тонкие измерения, однако, показали, что энергетический спектр a-частиц, испускаемых данным радиоактивным элементом, обнаруживает «тонкую структуру», т. е. испускается несколько групп a-частиц, причем в пределах каждой группы их энергии практически постоянны. Дискретный спектр a-частиц свидетельствует о том, что атомные ядра обладают дискретными энергетическими уровнями.
Для a-распада характерна сильная зависимость между периодом полураспада T1/2 и энергиейЕ вылетающих частиц. Эта взаимосвязь определяется эмпирическим законом Гейгера - Нэттола (1912)*, который обычно выражают в виде зависимости между пробегомRa (расстоянием, проходимым частицей в веществе до ее полной остановки) a-частиц в воздухе и постоянной радиоактивного распада l:
(257.1)
гдеА и В—эмпирические константы, l = (ln 2)/T1/2. Согласно (257.1), чем меньше период полураспада радиоактивного элемента, тем больше пробег, а следовательно, и энергия испускаемых им a-частиц. Пробег a-частиц в воздухе (при нормальных условиях) составляет несколько сантиметров, в более плотных средах он гораздо меньше, составляя сотые доли миллиметра (a-частицы можно задержать обычным листом бумаги).