
- •Вопрос 2. Собственные проводники. Зонная диаграмма. Собственная концентрация дырок и электронов. Температурный потенциал. Ширина запрещённой зоны.
- •Вопрос 3.Примесны пп n-типа. Зонная диаграмма.
- •Вопрос 4. Примесны пп p-типа. Зонная диаграмма.
- •Вопрос 5. Температурный диапазон работы примесных пп. Уравнение нейтральности.
- •Уравнение нейтральности полупроводников.
- •Вопрос 6. Термогенерация. Рекомбинация. Время жизни. Закон действующих масс.
- •Вопрос 7. Токи в пп.
- •1. Дрейфовый ток.
- •2.Диффузионный ток.
- •Вопрос 8. Решение стационарного уравнения диффузии. Зависимость диффузионного тока от координаты. Ток рекомбинации.
- •Вопрос 9. P-n переход. Структура. Больцмановское равновесие. Зонная диаграмма p-n-перехода. Высота потенциального барьеба.
- •Вопрос 10. Зарядовая модель p-n-перехода . Равновесная ширина p-n-перехода. Граничная равновесная концентрация неосновных зарядов.
- •Вопрос 11. Прямое смещение p-n-перехода. Граничная неравновесная концентрация неосновных зарядов.
- •Вопрос 12. Обратное смещение p-n-перехода. Экстракция.
- •Вопрос 13. Несимметричный p-n переход. Эмиттер. База. Односторонняя инжекция.
- •Вопрос 14. Вах идеализированного p-n перехода.
- •Вопрос 15. Прямая ветвь вах реального диода. Схема замещения диода при прямом включении. Тк Uпр
- •Дифференциальное сопротивление p-n перехода.
- •Температурная зависимость прямого напряжения.
- •Вопрос 16.Обратная ветвь вах реального диода. Схема замещения диода при обратном включении
- •Вопрос 17.Пробой p-n перехода. Виды пробоя. Температурная зависимость напряжения пробоя.
- •Вопрос 18. Неравновесная ширина p-n перехода. Барьерная ёмкость. Варикапы.
- •Вопрос 19. Основные технологические операции при изготовлении полупроводниковых диодов.
- •1. Сплавные диоды.
- •2. Точечные диоды.
- •4. Эпитаксиальные диоды.
- •Вопрос 20.Выпрямительные диоды. Параметры, классификация.
- •Классификация
- •Вопрос 21. Стабилитроны. Параметры, классификация. Стабисторы.
- •Вопрос 22. Параметрический стабилизатор напряжения.
- •Импульсный стабилизатор
- •Стабилизаторы переменного напряжения Современные стабилизаторы
- •Вопрос 23. Импульсные диоды. Процессы включения и отключения прямого тока.
- •Вопрос 24. Процессы импульсных диодов при переключении на обратное напряжение. Классификация импульсных диодов.
- •Вопрос 25. Диоды Шоттки.
- •Вопрос 26. Биполярные транзисторы Конструкция. Режимы работы.
- •Вопрос 27. Распределение неосновных зарядов в базе биполярного транзистора.
- •Вопрос 28. Токи в транзисторе. Коэффициент передачи тока эмиттера. Коэффициент инжекции. Коэффициент переноса.
- •Входные вах биполярного транзистора в схеме включения об.
- •Вопрос. 45 Малосигнальная схема замещения биполярного транзистора в схеме включения с общим эмиттером (оэ)
- •Вопрос. 47 Определение h – параметров транзистора по статическим вах в схеме включения об.
- •Вопрос 60.Динисторы, конструкция, принцип действия. Вах.
- •Вопрос. 62. Фотоэлектронные приборы. Фоторезисторы.
- •Вопрос. 63. Фотодиоды
- •Вопрос. 64. Фототранзисторы
- •Вопрос 65. Фототиристоры
- •Вопрос. 66. Оптроны
- •Существуют два класса оптических элементов, которые можно использовать при создании оптических эвм:
- •Вопрос. 67. Электровакуумные приборы
- •Типы эмиссии
- •Вопрос 68. Термокатоды
- •Вопрос 69. Электровакуумный диод. Потенциальные диаграммы. Режимы рон и рн
- •Принцип работы
- •Вах, Потенциальная диаграмма.
- •Режимы рон и рн не знаю!!! Вопрос 70. Идеализированная и реальная вах электровакуумного диода. Параметры.
- •Основными параметрами полупроводникового диода, учитывающими влияние температуры являются:
- •Вопрос 71. Электровакуумный триод. Режимы рв и рпп. Токораспределение. Проницаемость.
- •Вопрос. 73. Параметры электровакуумного триода.
- •Вопрос. 74. Тетрод. Динатронный эффект.
- •Динатронный эффект
- •Вопрос. 75. Пентод. Вах. Параметры.
Существуют два класса оптических элементов, которые можно использовать при создании оптических эвм:
Оптроны
Квантооптические элементы.
Они являются представителями соответственно электронно-оптического и оптического направлений.
Тип фотоприёмника определяет линейность передаточной функции оптрона. Наиболее линейны и тем самым пригодны для работы в аналоговых устройствах резисторные оптроны, затем — оптроны с приёмным фотодиодом или одиночным биполярным транзистором. Оптроны с составными биполярными транзисторами или полевыми транзисторами используются в импульсных (ключевых, цифровых) устройствах, в которых линейность передачи не требуется. Оптроны с фототиристорами применяются для гальванической развязки схем управления от цепей управления.
Вопрос. 67. Электровакуумные приборы
(ЭВП), электронные приборы, в которых рабочее пространство освобождено от воздуха и защищено от окружающей среды газонепроницаемой (вакуумно-плотной) оболочкой. Служат для различного рода преобразований электромагнитной энергии (генерации, усиления, преобразования частоты). К ЭВП относятся: вакуумные электронные приборы (электронные лампы, магнетроны, клистроны, электронно-лучевые приборы, рентгеновские трубки), газоразрядные электронные приборы (ионные приборы). Электронные лампы предназначены для усиления и генерирования электрических колебаний. В них (триодах, тетродах, пентодах и др.) осуществляется электростатическое (с помощью электродов) управление электронным потоком. Применяются в радиотехнике, радиосвязи, радиовещании, телевидении. Электровакуумные сверхвысокочастотные (СВЧ) приборы (магнетроны, клистроны и др.) предназначены для усиления, генерирования и преобразования электромагнитных сигналов сверхвысокой частоты. Применяются в устройствах радиолокации, телевидения для передачи телевизионных сигналов по линиям радиорелейной связи, спутниковым линиям, СВЧ радиосвязи, телеуправления (напр., искусственными спутниками и космическими кораблями). Электронно-лучевые приборы предназначены для преобразований информации, представленной в форме электрических или световых сигналов. К ним относятся осциллографические приборы, кинескопы, запоминающие электронно-лучевые приборы, передающие электронно-лучевые приборы и др. Фотоэлектронные приборы (фотоэлектронные умножители, вакуумные фотоэлементы, электронно-оптические преобразователи и др.) преобразуют энергию оптического излучения в электрическую энергию или преобразующие изображения в невидимых (напр., инфракрасных) лучах в видимое изображение. Их действие основано на использовании фотоэффекта. Применяются в устройствах автоматики, телевидения, астрономии и т. д. Вакуумные индикаторы, в которых электрическая энергия преобразуется в световую энергию, применяются в измерительных приборах, устройствах отображения информации, радиоприёмниках. Рентгеновские трубки предназначены для получения рентгеновского излучения и применяются для медицинской диагностики, терапии, просвечивания различных материалов (дефектоскопии) и т. д.
К таким приборам относят как вакуумные электронные приборы, в которых поток электронов проходит в вакууме (см., напр., клистрон), так и газоразрядные электронные приборы, в которых поток электронов проходит в газе. Так же к электровакуумным приборам относятся и лампы накаливания.