- •Билет 11
- •Зависимость скорости реакции от рН
- •Билет 13.
- •Билет 14.
- •Билет 17
- •Энзимопатии, возникающие при в6 дефиците.
- •Билет 22.
- •Билет 27.
- •Билет 28.
- •Билет 31.
- •Билет 32.
- •Билет 33.
- •Билет 34
- •Биологическая ценность белков.
- •Пути превращения аминокислот в печени.
- •Синтез аминокислот
- •Декарбоксилирование аминокислот.
- •Пути обезвреживания аммиака.
- •Энергетическая цена синтеза мочевины
- •Креатин Креатинфосфат
- •Обмен цистеина и метионина.
- •Функции цистеина:
- •Обмен фенилаланина и тирозина.
- •Синтез катехоламинов (адреналина, норадреналина)
- •Синтез тироксина
- •Обмен триптофана.
- •Биосинтез мелатонина.
- •Структура и свойства нуклеопротеидов.
- •Виды нуклеиновых кислот
- •Структура нуклеопротеидов.
- •Нуклеиновые кислоты.
- •Обмен нуклеотидов.
- •Распад пуриновых оснований.
- •Распад пиримидиновых оснований.
- •Распад пуриновых оснований.
- •Метаболизм белково-пептидных гормонов.
- •Пути экскреции гормонов и их метаболитов.
- •Биосинтез мелатонина.
- •Метаболизм аминокислотных гормонов.
- •Метаболизм тиреоидных гормонов.
- •Метаболизм мелатонина.
- •Пути экскреции гормонов и их метаболитов.
- •Регуляция обмена белков.
- •Этапы синтеза стероидных гормонов.
- •Транспорт гормонов.
- •Специфические транспортные белки плазмы крови.
- •Неспецифические белки.
- •Физиологическая роль связывания гормонов в крови.
- •Периферический метаболизм гормонов.
- •Виды метаболизма:
- •Регуляция обмена белков.
- •Этапы действия стг.
- •Этапы действия инсулина.
- •Половые гормоны.
- •Регуляция водно-солевого обмена.
- •Гормональная регуляция обмена кальция.
- •Функции кальция.
- •Билет 80. Витамины.
- •Функции витаминов.
- •Этапы нарушений обмена витаминов.
- •Диагностика гиповитаминозов
- •Причины возникновения и коррекция авитаминозов.
- •Причины нарушений обмена витаминов
- •Авитаминоз, гиповитаминоз.
- •Причины возникновения гиповитаминозов.
- •Клиническая картина гиповитаминозов.
- •Определение недостатка витаминов.
- •Биохимические принципы витаминотерапии
- •Нарушение обмена в1.
- •Витамин в5(рр).
- •Примеры реакций.
- •Патология обмена витамина в5.
- •Витамин в2 – рибофлавин.
- •Практической применение в2.
- •Обмен витамина в3 (пантотеновая кислота).
- •Витамин в6.
- •Витамин в6 участвует в обмене триптофана.
- •Энзимопатии, возникающие при в6 дефиците.
- •Обмен витамина н (биотин).
- •Врожденная пропионатацидемия.
- •Фолиевая кислота – витамин в9, Вс.
- •Нарушения обмена фолиевой кислоты.
- •Витамин в12-кобаламин.
- •Нарушения обмена витамина в12.
- •Аскорбиновая кислота (витамин с).
- •Нарушения обмена витамина с.
- •Функции витамина а.
- •Нарушения обмена витамина а.
- •Витамин е (токоферолы).
- •Витамин d.
- •Функции витамина d.
- •Механизм действия витамина d.
- •Нарушение обмена витамина d.
- •Врожденные нарушения обмена витамина d.
- •Витамин к.
- •Функции витамина к.
- •Белки плазмы крови.
- •Высаливание.
- •Функции белков плазмы крови.
- •Альбумины.
- •Строение гемоглобина.
- •Аномальные типы гемоглобина
- •Патология обмена гемоглобина.
- •Порфирии.
- •Синтез гема.
- •-Глобулины.
- •Билет 97. Биохимия печени
- •Билет 98
Обмен нуклеотидов.
Источники нуклеотидов
Поступление с пищей
|
НК |
|
|
|
Белок (как и все белки) |
НК в 12-перстной кишке под действием ДНК-азы и РНК-азы разщепляются за счет разрыва сложноэфирных связей, в результате образуются нуклеотиды, нуклеозиды, очень редко компоненты нуклеотидов. Внутриклеточно идет такой же распад НК.
Основное количество нуклеотидов идет de novo.
Соединения, участвующие в синтезе пурина
Глн + 2 АТФ + СО2 карбамоилфосфат + асп
Рибоза и дезоксирибоза – синтезируются в пентозофосфатном цикле и поступают с пищей.
Катаболизм нуклеотидов.
РНК быстрее ДНК. Конечные продукты распада азотистых оснований – мочевина, мочевая кислота. Ц, У, Т – конечный продукт мочевина.
Распад пуриновых оснований.
Подагра – избыток мочевой кислоты (ген. заболевание почек, алкоголь, отравления, мясная пища). Мочевая кислота выпадает в осадок (соли К-ураты) мочекаменная болезнь. Откладывается в мелких суставах. Лечение основного заболевания + усиление выведения солей.
Распад пиримидиновых оснований.
Распад пуриновых оснований.
Билет 73
По химической структуре гормоны можно разделить не 3 группы:
Стероиды.
Производные аминокислот.
Белково-пептидные гормоны. Внутри каждой группы выделяют еще группы гормонов.
Г
|
|||||||
Стероидные
|
Производные аминокислот
|
Белковопептидные гормоны
|
|||||
К
|
П
|
Трипто-фана мела-тонин (гормон эпифиза) |
Т |
1.Нейрогипофи-зарные 2.Гипоталамичес-кие релизингфакторы 3.Пептиды поджелудочной железы (инсулин, глюкагон) 4.Гипофизарные (пептиды типа АКТГ) 5.Белки паращи-товидных желез (паратгормон, кальцитонин) |
|||
Глюко-корти-коиды |
Минера-локорти-коиды |
Ан-дро-гены |
Эс-тро-гены |
Катехол-амины |
Тиреоид-ные гормоны |
||
|
|||||||
В составе белково-пептидных гормонов можно выделить 3 фрагмента, имеющих разное функциональное значение:
Адресный фрагмент – гаптомер – обеспечивает поиск мест специфического действия, но не вызывает биологических эффектов.
Актон – эффектомер - обеспечивает включение гормональных эффектов.
Вспомогательный (дополнительный) фрагмент стабилизирующий гормон, регулируя его активность, но не оказывает прямого влияния на реализацию гормонального эффекта.
Отличительная черта адресных фрагментов – способность в физиологических концентрациях конкурировать с цельной молекулой гормона за связывание с определенными рецепторами и неспособность в любых концентрациях воспроизводить гормональный эффект. Вместе с тем актоны практически не конкурируют в физиологических концентрациях с цельной молекулой гормона за связывание с реагирующей клеткой, но могут в сверхфизиологических концентрациях вызывать специфические гормональные эффекты.
Химической модификацией структуры гормональной молекулы можно получить производное гормона, которое будет связываться рецепторами, но не будет вызывать эффекта. Такие модифицированные соединения могут обратимо конкурировать с нативными гормонами за связи рецепторов, блокируя гормональный эффект. На этом принципе основано действие антигормонов конкурентного типа.
Синтез белково-пептидных гормонов.
Синтез полипептидного гормона складывается из 2 этапов:
Рибосомального синтеза неактивного предшественника на матрице мРНК.
Посттрансляционное образование активного гормона.
Посттрансляционная активация гормональных предшественников может происходить 2 путями:
Многоступенчатая ферментативная деградация молекул крупномолекулярных предшественников с уменьшением размера молекул.
Неферментативная ассоциация прогормональных субъединиц с укрупнением молекулы активируемого гормона.
Первая форма активации предшественников пептидных гормонов характерна для инсулина, паратгормона, ангиотензина.
Рассмотрим этот процесс на примере инсулина. На первом этапе на полисомах -клеток синтезируется короткоживущий одноцепочечный пептид, состоящий из 104 – 110 аминокислотных остатков. Этот пептид назван препроинсулином и не обладает биологической активностью:
Сигнальный и вставочный фрагменты вариабельны у различных видов животных. В цистернах шероховатого ретикулума препроинсулин подвергается протеолизу с N-конца, в результате отщепляется сигнальный 23-членный пептид, «протаскивающий» прогормон через мембрану. Препроинсулин превращается в проинсулин, обладающий очень низкой биологической активностью. Затем происходит ферментативное выщепление вставочного фрагмента и проинсулин, А и В цепи соединяются дисульфидными связями.
Схема синтеза:
Г
ен
мРНК
препрогормон прогормон
гормон А

НП
в желудке
ормоны
ортикостероиды
оловые
ирозина