- •Билет 11
- •Зависимость скорости реакции от рН
- •Билет 13.
- •Билет 14.
- •Билет 17
- •Энзимопатии, возникающие при в6 дефиците.
- •Билет 22.
- •Билет 27.
- •Билет 28.
- •Билет 31.
- •Билет 32.
- •Билет 33.
- •Билет 34
- •Биологическая ценность белков.
- •Пути превращения аминокислот в печени.
- •Синтез аминокислот
- •Декарбоксилирование аминокислот.
- •Пути обезвреживания аммиака.
- •Энергетическая цена синтеза мочевины
- •Креатин Креатинфосфат
- •Обмен цистеина и метионина.
- •Функции цистеина:
- •Обмен фенилаланина и тирозина.
- •Синтез катехоламинов (адреналина, норадреналина)
- •Синтез тироксина
- •Обмен триптофана.
- •Биосинтез мелатонина.
- •Структура и свойства нуклеопротеидов.
- •Виды нуклеиновых кислот
- •Структура нуклеопротеидов.
- •Нуклеиновые кислоты.
- •Обмен нуклеотидов.
- •Распад пуриновых оснований.
- •Распад пиримидиновых оснований.
- •Распад пуриновых оснований.
- •Метаболизм белково-пептидных гормонов.
- •Пути экскреции гормонов и их метаболитов.
- •Биосинтез мелатонина.
- •Метаболизм аминокислотных гормонов.
- •Метаболизм тиреоидных гормонов.
- •Метаболизм мелатонина.
- •Пути экскреции гормонов и их метаболитов.
- •Регуляция обмена белков.
- •Этапы синтеза стероидных гормонов.
- •Транспорт гормонов.
- •Специфические транспортные белки плазмы крови.
- •Неспецифические белки.
- •Физиологическая роль связывания гормонов в крови.
- •Периферический метаболизм гормонов.
- •Виды метаболизма:
- •Регуляция обмена белков.
- •Этапы действия стг.
- •Этапы действия инсулина.
- •Половые гормоны.
- •Регуляция водно-солевого обмена.
- •Гормональная регуляция обмена кальция.
- •Функции кальция.
- •Билет 80. Витамины.
- •Функции витаминов.
- •Этапы нарушений обмена витаминов.
- •Диагностика гиповитаминозов
- •Причины возникновения и коррекция авитаминозов.
- •Причины нарушений обмена витаминов
- •Авитаминоз, гиповитаминоз.
- •Причины возникновения гиповитаминозов.
- •Клиническая картина гиповитаминозов.
- •Определение недостатка витаминов.
- •Биохимические принципы витаминотерапии
- •Нарушение обмена в1.
- •Витамин в5(рр).
- •Примеры реакций.
- •Патология обмена витамина в5.
- •Витамин в2 – рибофлавин.
- •Практической применение в2.
- •Обмен витамина в3 (пантотеновая кислота).
- •Витамин в6.
- •Витамин в6 участвует в обмене триптофана.
- •Энзимопатии, возникающие при в6 дефиците.
- •Обмен витамина н (биотин).
- •Врожденная пропионатацидемия.
- •Фолиевая кислота – витамин в9, Вс.
- •Нарушения обмена фолиевой кислоты.
- •Витамин в12-кобаламин.
- •Нарушения обмена витамина в12.
- •Аскорбиновая кислота (витамин с).
- •Нарушения обмена витамина с.
- •Функции витамина а.
- •Нарушения обмена витамина а.
- •Витамин е (токоферолы).
- •Витамин d.
- •Функции витамина d.
- •Механизм действия витамина d.
- •Нарушение обмена витамина d.
- •Врожденные нарушения обмена витамина d.
- •Витамин к.
- •Функции витамина к.
- •Белки плазмы крови.
- •Высаливание.
- •Функции белков плазмы крови.
- •Альбумины.
- •Строение гемоглобина.
- •Аномальные типы гемоглобина
- •Патология обмена гемоглобина.
- •Порфирии.
- •Синтез гема.
- •-Глобулины.
- •Билет 97. Биохимия печени
- •Билет 98
Энергетическая цена синтеза мочевины
На синтез одной молекулы мочевины расходуется 4 высокоэнергетические фосфатные группы. Две молекулы АТФ требуются для образования аргининосукцината. Но в последней реакции АТФ подвергается пирофосфат, который гидролизуется с образованием 2 молекул ортофосфата. Поэтому на синтез мочевины расходуется 4 молекулы АТФ.
Билет 61.
Биосинтез мочевины.
Мочевина – главный конечный продукт обмена азота в организме. С мочой за сутки выводится 25-30 г мочевины. Синтез мочевины идет в печени. Превращение аммиака в мочевину осуществляется в форме цикла. Цикл мочевины открыли Ганс Кребс и Курт Хенселайт (1932г).
Пернвая аминогруппа, поступающая в цикл мочевины, получается в виде свободного аммиака при окислительном дезаминировании глутамата в митохондриях клеток печени. Эта рекция катализируется глутаматдегидрогеназой, для действия которой требуется НАД+
Глутамат+НАД++Н2О -кетоглутарат + +НАДН+Н+.
Аммиак соединяется с двуокисью углерода с образованием карбомоилфосфата. Реакция требует затраты АТФ. Катализирует эту реакцию карбомоилфосфатсинтетаза. На следующей стадии карбомоилфосфат взаимодействует с орнитином с образованием цитрулина. Образовавшийся цитрулин переходит из митохондрий в цитозоль клеток печени. Цитрулин взаимодействует с аспартатом в присутствии АТФ с образованием аргининсукцината. Эта реакция катализируется аргининсукцинатсинтетазой. На следующей стадии аргининсукцинат расщепляется с образованием аргинина и фумарата. Фумарат возвращается в пул промежуточных продуктов цикла лимонной кислоты. На последней стадии аргинин под действием аргиназы расщепляется на мочевину и орнитин.
Регенерированный орнитин вновь поступает в митохондрии.
Мочевина из клеток печени поступает в кровь и через почки выводится с мочой.
Повышение концентрации аммиака в крови может вызвать повторяющуюся рвоту, возбуждение, припадки с потерей сознания (печеночная кома) и судорогами. При хронической врожденной гипераммониемии наблюдается отставание умственного развития. Наиболее частая причина гипераммониемии – нарушение орнитинового цикла. В орнитиновом цикле участвует 5 ферментов и имеет место 5 типов наследственных болезней. Люди с такими дефектами не переносят пищи, богатой белком. Детей с таким нарушением лечат введением -кетоаналогов аминокислот. -кетоаналоги незаменимых аминокислот могут под действием трансаминаз присоединять аминогруппы от имеющихся заменимых аминокислот. Это предотвращает возможность попадания аммиака в кровь.
Почему высокое содержание NH4+ токсично? Ион аммония сдвигает равновесие реакции, катализируемой глутаматдегидрогеназой, в сторону образования глутамата, а это приводит к истощению -кетоглутарата. Истощение -оксоглутамата, промежуточного продукта ЦТК, приводит к уменьшению скорости образования АТФ.
-оксоглутарат глутамат глутамин
глутаматдегидрогеназа глутаминсинтетаза
Энергетическая цена синтеза мочевины
На синтез одной молекулы мочевины расходуется 4 высокоэнергетические фосфатные группы. Две молекулы АТФ требуются для образования аргининосукцината. Но в последней реакции АТФ подвергается пирофосфат, который гидролизуется с образованием 2 молекул ортофосфата. Поэтому на синтез мочевины расходуется 4 молекулы АТФ.
Синтез заменимых аминокислот
Аминирование
СООН COOH
| НАДФН2+NH4+ НАДФ |
(
CH2)2
(CH2)2
про
| | глн
C=O CHNH2
| |
COOH COOH
Переаминирование
Глу + пир ала + -КГ
Глу + ЩУК асп + -КГ
асн
Глю сер гли
Токсическое действие аммиака.
+
-КГ
Глу
Глн
ЦТК
ЦТК
АТФ
в мозге
Кома
Способ лечения:
Перевод на малобелковую пищу
Замена заменимых аминокислот на кетокислоты (незам)
Гепатоцит
Билет 62.
Обмен глицина и серина.
Гли и сер относятся к заменимым, глюкопластичным аминокислотам.
Глицин, много содержится в белках, не имеет радикала, оптически неактивна, заменимая, глюкогенная NН2-СН2-СООН
Используется для синтеза креатина в почках
Почки
Печень
Мышцы требуют Е (кратковременная интенсивная работа). Должен быть запас Е-креатинфосфат.
Может образовываться в других клетках. Это средство транспорта Е внутри клетки.
Фосфокреатин используется мышцами для кратковременной работы.
Продукт распада креатина креатин
Креатинфосфат легко проходит в цитоплазму, он менее полярен, чем АТФ. Креатинфосфат отдает Фн на АДФ, а креатин возвращается в митохондрии. Такая транспортная функция креатинфосфата характерна для всех клеток.
Образование
-аминолевулиновой
кислоты.Синтез пуриновых оснований. Глицин является остовом – это скелет.
Синтез вторичных желчных кислот. Желчные кислоты участвуют в переваривании жиров, холестеридов. Желчные кислоты активируются глицином (холевая – гликохолевая).
Глицин – нейромедиаторная АМК – тормозной медиатор нервной системы (30 минут). Глицин принимает участие в синтезе белков, пуриновых нуклеотидов, гема, парных желчных кислот, кератина, глутатиона.
Г |
Сер |
Т |
|
|
Г |
М |
Гли |
Л |
Гиппуровая кислота |
|
Гем |
Креатин |
Тре |
Пурины (ДНК, РНК) |
|
|
Желчные кислоты |
Глицин участвует в образовании гема:
СООН СН2-NH2 HSKoA COOH
|
| B6
|
С Н2 + COOH CH2 + CO2
|
-аминолевули-
|
СН2 натсинтаза CH2
| |
COSKoA C=O
|
CH2-NH2
-аминолевулиновая кислота
В качестве кофермента -аминолевулинансинтаза содержит витамин В6. -аминолевулинсинтаза – аллостерический, ключевой фермент синтеза гема. Ингибируется активность фермента по принципу обратной отрицательной связи – гемом. Глицин принимает участие в синтезе креатина. Креатин обеспечивает работающую мышцу АТФ. Синтез креатина идет в почках и печени. В почках образуются гуанидинуксусная кислота:
NH2 NH2 NH2 NH2
| | | |
C=NH + CH2 (CH2)3 + C=NH
| | | |
NH COOH CH-NH2 NH
| глицин | |
(CH2)3 COOH CH2
| орнитин |
CHNH2 COOH
| гуанидинуксусная
COOH кислота
Аргинин
Гуанидинацетат с кровотоком поступает в печень, где в результате реакции трансметилирования дает креатин:
NH2 NH2 NH~PO3H2
| | |
C
=NH
CH3
C=NH АТФ C=NH
|
| |
NH N-CH3 N-CH3
| | |
CH2 CH2 CH2
| | |
COOH COOH COOH

лутатион
каневые
белки
люкоза
уравьиная
кислота
ипиды