
- •1.Система поддержки принятия решений (сппр), ее основные задачи. Классификация сппр. Схема типичной сппр.
- •2.Сравнительный анализ аналитической и oltp систем.
- •3.Хранилище данных. История возникновения понятия, определение, основные свойства.
- •4.Основные подходы к реализации хранилищ данных.
- •Реализация хранилищ и витрин данных
- •Понятие и суть etl-процесса, основные преобразования данных.
- •Определение качества данных. Методика оценки качества, основанная на 4-х основных показателях.
- •8.Определение качества данных.Уровневая методика оценки качества.
- •11.Повышение качества данных: предварительная замена, классификация, структуризация.
- •12.Повышение качества данных: верификация, нормализация.
- •14.Понятия запроса и объекта запроса. Основные этапы поиска информации. Классификация задачи поиска.
- •15.Особенности решение задачи поиска в структурированных источниках на всех этапах.
- •Методы поиска Адресный поиск
- •Семантический поиск
- •Документальный поиск
- •Фактографический поиск
- •16.Оценка эффективности поисковых инструментов.
- •17. Суть многомерного анализа данных, основные понятия. Возможные операции над гиперкубом. Понятие olap.
- •18. 12 Правил Кодда.
- •19. 6 Дополнительных правил Кодда. Группы правил.
- •20.Определение olap через 5 ключевых понятий теста fasmi.
- •21.Основные подходы к реализации olap, их преимущества и недостатки.
- •23.Единая система нси. Требования идентифицируемости и уникальности, принципы построения.
- •Принципы построения единой системы нси.
- •24. Система нси: 1-3 типовые ошибки.
- •25.Система нси: 4-6 типовые ошибки.
- •26. Система нси: 7-10 типовые ошибки.
- •27.Понятие Data Mining. Дисциплины, использованные при создании Data Mining. Основные действия выполняемые Data Mining. Основные ограничения использования.
- •28.Основные задачи Data Mining. Классификация и кластеризация: суть, сравнительный анализ.
- •29.Основные задачи Data Mining. Поиск ассоциативных правил, прогнозирование, анализ отклонений.
- •30.Определение метода и алгоритма. Классификация стадий Data Mining. Свободный поиск.
- •31.Определение метода и алгоритма. Классификация стадий Data Mining. Прогностическое моделирование.
- •32.Определение метода и алгоритма. Классификация стадий Data Mining. Анализ исключений.
- •33.Основные этапы процесса подготовки к Data Mining. Анализ предметной области, постановка задачи, подготовка данных.
- •34.Понятие Text Mining. Основные этапы.
- •35.Понятие Text Mining. Основные задачи.
- •36. Предварительная обработка данных, основные приемы.
- •38.Oracle Data Mining (odm). Возможности, архитектура, характеристики. Используемые алгоритмы.
- •39.Функциональные возможности odm. Алгоритм Naïve Bayes.
- •40.Функциональные возможности odm. Алгоритм Support Vector Machine.
- •41.Функциональные возможности odm. Алгоритм k-means. Проверка качества кластеризации.
- •Алгоритм k-means.
- •42.Функциональные возможности odm. Алгоритмы Apriori.
- •43.Workflow.(поток работы) Суть, базовые понятия и их взаимосвязь.
- •44.Workflow. Структура системы, основные компоненты и их взаимосвязь.
- •45.Workflow. Условия представления бизнес-процесса как процесса Workflow. Порядок представления бизнес процесса в графическом виде (idef0).
- •49.Категории операций бизнес-процесса. Типовые параметры описания бизнес-процесса. Условия перехода между операциями.
- •46.Типовые цели внедрения проекта Workflow. Цикл управления эксплуатацией и развитием системы.
- •47.Понятие агентов. Типы агентов. Способности обучающихся агентов.
- •48.Понятие субагентов, типы субагентов. Свойства автономного агента
- •49.Мультиагентная система (мас). Определение, основные характеристики, классификация мас.
- •50.Методы организации работы в мас. Условия размещения агента на сервере. Операции над агентами. Примеры использования мас.
17. Суть многомерного анализа данных, основные понятия. Возможные операции над гиперкубом. Понятие olap.
OLAP — технология обработки информации, включающая составление и динамическую публикацию отчётов и документов. Используется аналитиками для быстрой обработки сложных запросов к базе данных. Служит для подготовки бизнес-отчётов по продажам, маркетингу, в целях управления, т. н. data mining — добыча данных (способ анализа информации в базе данных с целью отыскания аномалий и трендов без выяснения смыслового значения записей).
По Кодду одновременный анализ по нескольким измерениям определяется как многомерный анализ. Каждое измерение включает направления консолидации данных, состоящие из серии последовательных уровней обобщения, где каждый вышестоящий уровень соответствует большей степени агрегации данных по соответствующему измерению.
В специализированных СУБД, основанных на многомерном представлении данных, данные организованы не в форме реляционных таблиц, а в виде упорядоченных многомерных массивов:
1) гиперкубов (все хранимые в БД ячейки должны иметь одинаковую мерность, то есть находиться в максимально полном базисе измерений) или
2) поликубов (каждая переменная хранится с собственным набором измерений, и все связанные с этим сложности обработки перекладываются на внутренние механизмы системы)
Операции над гиперкубом:1.срез.2вращение.
OLAP-куб содержит в себе базовые данные и информацию об измерениях. Куб потенциально содержит всю информацию, которая может потребоваться для ответов на любые запросы.
Вместе с базовой концепцией существуют три типа OLAP — OLAP со многими измерениями (Multidimensional OLAP — MOLAP), реляционный OLAP (Relational OLAP — ROLAP) и гибридный OLAP (Hybrid OLAP — HOLAP). MOLAP — это классическая форма OLAP, так что её часто называют просто OLAP. Она использует суммирующую БД, специальный вариант процессора пространственных БД и создаёт требуемую пространственную схему данных с сохранением как базовых данных, так и агрегатов. ROLAP работает напрямую с реляционным хранилищем, факты и таблицы с измерениями хранятся в реляционных таблицах, и для хранения агрегатов создаются дополнительные реляционные таблицы. HOLAP использует реляционные таблицы для хранения базовых данных и многомерные таблицы для агрегатов. Особым случаем ROLAP является ROLAP реального времени (Real-time ROLAP — R-ROLAP). В отличие от ROLAP в R-ROLAP для хранения агрегатов не создаются дополнительные реляционные таблицы, а агрегаты рассчитываются в момент запроса. При этом многомерный запрос к OLAP-системе автоматически преобразуется в SQL-запрос к реляционным данным.
18. 12 Правил Кодда.
1.Многомерность
2.Прозрачность.
3.Доступность.
4.Постоянная производительность при разработке отчета
5.клиент- серверная архитектура
6.равноправие измерений.
7.динамическое управление разряженными матрицами
8.поддержка многопользовательского режима.
9.неограниченные перекрестные операции
10.интуитивная модуляция данными
11.гибкая возможность получения отчета
12.неограниченная размерность и число уровней агрегации
+6
13.пакетное извлечение против интерпретации
14.поддержка всех моделей OLAP анализа
15.обработка ненормализованных данных
16.Сохранение результатов OLAP
17.исключение отсутствующих значений.
18.обработка отсутствующих значений
4 особенности на основе 18 правил
1.группа основных особенностей, к ней относят правило 1,3,10,14,13,,5,2,8
2.специальные особенности:15,16,17,18
3.особенности предст. Отчетов:11,4,7
4.управление измерений:6,12,9