
- •1.Система поддержки принятия решений (сппр), ее основные задачи. Классификация сппр. Схема типичной сппр.
- •2.Сравнительный анализ аналитической и oltp систем.
- •3.Хранилище данных. История возникновения понятия, определение, основные свойства.
- •4.Основные подходы к реализации хранилищ данных.
- •Реализация хранилищ и витрин данных
- •Понятие и суть etl-процесса, основные преобразования данных.
- •Определение качества данных. Методика оценки качества, основанная на 4-х основных показателях.
- •8.Определение качества данных.Уровневая методика оценки качества.
- •11.Повышение качества данных: предварительная замена, классификация, структуризация.
- •12.Повышение качества данных: верификация, нормализация.
- •14.Понятия запроса и объекта запроса. Основные этапы поиска информации. Классификация задачи поиска.
- •15.Особенности решение задачи поиска в структурированных источниках на всех этапах.
- •Методы поиска Адресный поиск
- •Семантический поиск
- •Документальный поиск
- •Фактографический поиск
- •16.Оценка эффективности поисковых инструментов.
- •17. Суть многомерного анализа данных, основные понятия. Возможные операции над гиперкубом. Понятие olap.
- •18. 12 Правил Кодда.
- •19. 6 Дополнительных правил Кодда. Группы правил.
- •20.Определение olap через 5 ключевых понятий теста fasmi.
- •21.Основные подходы к реализации olap, их преимущества и недостатки.
- •23.Единая система нси. Требования идентифицируемости и уникальности, принципы построения.
- •Принципы построения единой системы нси.
- •24. Система нси: 1-3 типовые ошибки.
- •25.Система нси: 4-6 типовые ошибки.
- •26. Система нси: 7-10 типовые ошибки.
- •27.Понятие Data Mining. Дисциплины, использованные при создании Data Mining. Основные действия выполняемые Data Mining. Основные ограничения использования.
- •28.Основные задачи Data Mining. Классификация и кластеризация: суть, сравнительный анализ.
- •29.Основные задачи Data Mining. Поиск ассоциативных правил, прогнозирование, анализ отклонений.
- •30.Определение метода и алгоритма. Классификация стадий Data Mining. Свободный поиск.
- •31.Определение метода и алгоритма. Классификация стадий Data Mining. Прогностическое моделирование.
- •32.Определение метода и алгоритма. Классификация стадий Data Mining. Анализ исключений.
- •33.Основные этапы процесса подготовки к Data Mining. Анализ предметной области, постановка задачи, подготовка данных.
- •34.Понятие Text Mining. Основные этапы.
- •35.Понятие Text Mining. Основные задачи.
- •36. Предварительная обработка данных, основные приемы.
- •38.Oracle Data Mining (odm). Возможности, архитектура, характеристики. Используемые алгоритмы.
- •39.Функциональные возможности odm. Алгоритм Naïve Bayes.
- •40.Функциональные возможности odm. Алгоритм Support Vector Machine.
- •41.Функциональные возможности odm. Алгоритм k-means. Проверка качества кластеризации.
- •Алгоритм k-means.
- •42.Функциональные возможности odm. Алгоритмы Apriori.
- •43.Workflow.(поток работы) Суть, базовые понятия и их взаимосвязь.
- •44.Workflow. Структура системы, основные компоненты и их взаимосвязь.
- •45.Workflow. Условия представления бизнес-процесса как процесса Workflow. Порядок представления бизнес процесса в графическом виде (idef0).
- •49.Категории операций бизнес-процесса. Типовые параметры описания бизнес-процесса. Условия перехода между операциями.
- •46.Типовые цели внедрения проекта Workflow. Цикл управления эксплуатацией и развитием системы.
- •47.Понятие агентов. Типы агентов. Способности обучающихся агентов.
- •48.Понятие субагентов, типы субагентов. Свойства автономного агента
- •49.Мультиагентная система (мас). Определение, основные характеристики, классификация мас.
- •50.Методы организации работы в мас. Условия размещения агента на сервере. Операции над агентами. Примеры использования мас.
Методы поиска Адресный поиск
Процесс поиска документов по чисто формальным признакам, указанным в запросе. Для осуществления нужны следующие условия:
Наличие у документа точного адреса
Обеспечение строгого порядка расположения документов в запоминающем устройстве или в хранилище системы.
Адресами документов могут выступать адреса веб-серверов и веб-страниц и элементы библиографической записи, и адреса хранения документов в хранилище.
Семантический поиск
Процесс поиска документов по их содержанию. Условия:
Перевод содержания документов и запросов с естественного языка на информационно-поисковый язык и составление поисковых образов документа и запроса.
Составление поискового описания, в котором указывается дополнительное условие поиска.
(15 продолжение)
Принципиальная разница между адресным и семантическим поисками состоит в том, что при адресном поиске документ рассматривается как объект с точки зрения формы, а при семантическом поиске — с точки зрения содержания. При семантическом поиске находится множество документов без указания адресов. В этом принципиальное отличие каталогов и картотек. Библиотека — собрание библиографических записей без указания адресов.
Документальный поиск
Процесс поиска в хранилище информационно-поисковой системы первичных документов или в базе данных вторичных документов, соответствующих запросу пользователя.
Два вида документального поиска:
Библиотечный, направленный на нахождение первичных документов.
Библиографический, направленный на нахождение сведений о документах, представленных в виде библиографических записей.
Фактографический поиск
Процесс поиска фактов, соответствующих информационному запросу. К фактографическим данным относятся сведения, извлеченные из документов, как первичных, так и вторичных и получаемые непосредственно из источников их возникновения.
Различают два вида:
Документально-фактографический, заключается в поиске в документах фрагментов текста, содержащих факты.
Фактологический (описание фактов), предполагающий создание новых фактографических описаний в процессе поиска путем логической переработки найденной фактографической информации.
16.Оценка эффективности поисковых инструментов.
Оценки эффективности
Существует много способов оценить насколько хорошо документы, найденные ИПС, соответствуют запросу. К сожалению, понятие степени соответствия запроса, или другими словами релевантности, является субъективным понятием, а степень соответствия зависит от конкретного человека, оценивающего результаты выполнения запроса.
Точность (precision)
Определяется как отношение числа релевантных документов, найденных ИПС, к общему числу документов:
,
где Drel — это множество релевантных документов в базе, а Dretr — множество документов, найденных системой. По результатам исследований компании, оценивающей релевантность показателей основных русских и зарубежных поисковых систем.
Полнота (recall)
Отношение числа найденных релевантных документов, к общему числу релевантных документов в базе:
,
где Drel — это множество релевантных документов в базе, а Dretr — множество документов, найденных системой.
Выпадение (fall-out)
Выпадение характеризует вероятность нахождения нерелевантного ресурса и определяется, как отношение числа найденных нерелевантных документов к общему числу нерелевантных документов в базе:
,
где Dnrel — это множество нерелевантных документов в базе, а Dretr — множество документов, найденных системой.
F-мера (F-measure, мера Ван Ризбергена)
Традиционно F-мера определяется, как гармоническое среднее точности и полноты:
Часто ее также называют F1 мерой, потому что точность и полнота присутствуют в этой формуле с одинаковым весом.
Более общая формула для положительного вещественного α имеет вид: