- •Раздел 1 Основы металловедения
- •Тема 1.1 Введение. Строение и свойства металлов и сплавов
- •«Кристаллическое строение металлов»
- •«Дефекты кристаллических решеток»
- •«Кристаллизация металлов»
- •«Основные сведения о сплавах»
- •«Диаграммы состояния»
- •«Диаграмма состав – свойство»
- •Тема 1.2 Сплавы железа с углеродом
- •«Чугун»
- •«Углеродистые и легированные стали»
- •«Влияние на сталь углерода, постоянных примесей и легирующих элементов»
- •«Классификация сталей»
- •«Маркировка сталей»
- •«Инструментальные стали»
- •«Стали и сплавы с особыми свойствами»
- •Тема 1. 3 Основы термической и химико – термической обработки металлов
- •«Превращения в стали при нагреве»
- •«Превращения в стали при охлаждении»
- •«Отжиг стали»
- •«Закалка стали»
- •«Химико-термическая обработка стали»
- •«Цементация стали»
- •«Азотирование, цианирование и нитроцементация стали»
- •«Диффузионное насыщение металлами и металлоидами»
- •«Коррозия металлов и меры борьбы с ней»
- •«Основы теории коррозии металлов»
- •Тема 1.4 Цветные металлы и их сплавы «Сплавы на медной основе»
- •«Легкие сплавы»
- •«Антифрикционные сплавы»
- •«Порошковая металлургия»
- •Раздел 2 Проводниковые материалы
- •Тема 2.1 Электротехнические характеристики проводниковых материалов «Проводниковые материалы высокой проводимости»
- •«Материалы высокого сопротивления»
- •«Жидкие и благородные металлы»
- •«Электроугольные изделия»
- •Тема 2.2 Сортамент проводов
- •«Обмоточные провода»
- •«Монтажные провода и кабели»
- •«Установочные провода»
- •«Кабельные линии»
- •Раздел 3Электроизоляционные материалы
- •Тема 3.1 Физика диэлектриков
- •«Основные электрические свойства диэлектриков»
- •«Поляризация диэлектриков»
- •«Влияние температуры на поляризацию диэлектриков»
- •«Электропроводность диэлектриков»
- •« Диэлектрические потери»
- •«Пробой диэлектриков»
- •«Электрохимический пробой»
- •Тема 3.2 Механические, тепловые и физико – химические характеристики диэлектриков
- •«Тепловые свойства диэлектриков»
- •«Физико-химические свойства диэлектриков»
- •Тема 3.3 Газообразные диэлектрики
- •«Пробой газов»
- •«Пробой жидких диэлектриков»
- •«Синтетические жидкие диэлектрики»
- •Тема 3.5 «Высокомолекулярные органические и элементоорганические диэлектрики»
- •«Природные смолы»
- •1. Природные смолы.
- •2. Твердые органические диэлектрики.
- •3. Полимеризационные синтетические полимеры
- •4. Поликонденсационные синтетические полимеры.
- •Тема 3.6 Пластмассы, пленочные материалы «Пластмассы»
- •«Пленочные материалы»
- •Тема 3.7 Резины
- •Тема 3.8 Лаки, эмали, компаунды
- •«Компауды»
- •Тема 3.9 Волокнистые диэлектрики «Бумаги и картоны»
- •«Лакоткани, ленты и лакированные трубки»
- •Тема 3.10 Электроизоляционная слюда и материалы на ее основе
- •«Слюдинитовые и слюдопластовые материалы»
- •«Электрокерамические материалы»
- •«Силикатные (неорганические) стекла»
- •Раздел 4 Полупроводниковые материалы
- •Тема 4.1 Основные свойства полупроводниковых материалов. Полупроводниковые материалы и их параметры
- •«Полупроводниковые материалы»
- •Раздел 5 Магнитные материалы
- •Тема 5.1 Основные характеристики магнитных материалов
- •«Металлические магнитомягкие материалы»
- •«Изолирующие и защитные покрытия трансформаторных сталей»
- •«Металлические магнитотвердые материалы»
- •«Ферриты»
- •Раздел 6 Неразъемные соединения
- •Тема 6.1 Сварка, пайка металлов. Припои и флюсы
- •«Дуговая сварка и резка»
- •«Плазменная резка, сварка и наплавка»
- •«Электрошлаковая сварка»
- •«Контактная сварка»
- •«Прочие виды сварки»
- •«Пайка конструкционных материалов»
- •Тема 6.2 Виды обработки металлов и неметаллических материалов
- •«Литье в многократные формы»
- •«Обработка металлов давлением»
- •«Прокатка, прессование и волочение»
- •«Ковка и штамповка»
«Превращения в стали при охлаждении»
Превращение аустенита в перлит может происходить только при температурах ниже 727° С Для распада аустенита должно быть его переохлаждение.
Образцы стали, нагретые до аустенитного состояния, быстро переносят в ванну с жидкой средой, имеющей температуру ниже 7270 С и выдерживают до завершения превращения.
Видов термической обработки: собственно термическая обработка—только термическое воздействие на сталь; термомеханическая —сочетание термического воздействия и пластической деформации; химико-термическая—сочетание термического и химического воздействия.
Собственно термическая обработка подразделяется на отжиг (первого и второго рода), закалку и отпуск.
«Отжиг стали»
Отжигом называется нагрев стали до определенной температуры, выдержка и последующее медленное охлаждение (в печи) с целью получения более равновесной структуры.
Отжиг первого рода – это отжиг, при котором не происходит фазовых превращений (перекристаллизации), а происходит приведение структуры из неравновесного состояния в более равновесное. Различают следующие разновидности отжига первого рода: гомогенизационный и рекристаллизационный.
Гомогенизационный отжиг - это отжиг с длительной выдержкой
при температуре выше 950 °С (обычно при 1100—1200 °С) с целью выравнивания химического состава в результате диффузии.
Рекристаллизационный отжиг применяют для заготовок, обработанных давлением (прокаткой, волочением, ковкой, штамповкой). С увеличением в металле количества дислокаций прочность сначала понижается, а затем повышается. Упрочнение металла при избытке дислокаций объясняется тем, что они препятствуют перемещению друг друга и поэтому затрудняют пластическую деформацию. Упрочнение металла в результате пластической деформации, проводимой при комнатной температуре (холодная деформация), например прокатка, волочение, называется наклепом. При рекристализационном отжиге деформированные вытянутые зерна становятся равноосными, в результате твердость снижается, а пластичность и ударная вязкость повышаются. Для полного снятия внутреннего напряжения в стали нужна температура не менее 600 0С. Охлаждение после выдержки при заданной температуре должно быть достаточно медленным; при ускоренном охлаждении вновь возникают внутренние напряжения
Отжиг второго рода - это отжиг, при котором изменяется структура сплава (перекристаллизация). Различают следующие разновидности отжига второго рода: полный, неполный, изотермический, нормализационный (нормализация).
При полном отжиге понижаются твердость и прочность стали. В результате полного отжига структура стали становится близкой к равновесной, что способствует лучшей обрабатываемости резанием и штамповкой. Полный отжиг используют также как окончательную операцию термической обработки заготовок.
Отжигом достигается также измельчение зерна. Крупнозернистая структура получается, например, в результате перегрева стали, такая структура называется видманштетовой.
С ростом зерна снижается ударная вязкость, особенно при высокой твердости (после закалки и низкого отпуска), повышается склонность к закалочным трещинам.
Неполный отжиг применяют после горячей обработки давлением, когда у заготовок мелкозернистая структура.
При изотермическом отжиге после нагрева и выдержки заготовки быстро охлаждают и выдерживают при этой температуре, после чего охлаждают на воздухе.
При нормализации сталь после нагрева охлаждается не в печи, а на воздухе в цехе, что экономичнее. Нагрев ведется до полной перекристаллизации. В результате нормализации сталь приобретает мелкозернистую и однородную структуру. Твердость и прочность после нормализации выше, чем после отжига. Часто нормализацией улучшают структуру перед закалкой.