- •Раздел 1 Основы металловедения
- •Тема 1.1 Введение. Строение и свойства металлов и сплавов
- •«Кристаллическое строение металлов»
- •«Дефекты кристаллических решеток»
- •«Кристаллизация металлов»
- •«Основные сведения о сплавах»
- •«Диаграммы состояния»
- •«Диаграмма состав – свойство»
- •Тема 1.2 Сплавы железа с углеродом
- •«Чугун»
- •«Углеродистые и легированные стали»
- •«Влияние на сталь углерода, постоянных примесей и легирующих элементов»
- •«Классификация сталей»
- •«Маркировка сталей»
- •«Инструментальные стали»
- •«Стали и сплавы с особыми свойствами»
- •Тема 1. 3 Основы термической и химико – термической обработки металлов
- •«Превращения в стали при нагреве»
- •«Превращения в стали при охлаждении»
- •«Отжиг стали»
- •«Закалка стали»
- •«Химико-термическая обработка стали»
- •«Цементация стали»
- •«Азотирование, цианирование и нитроцементация стали»
- •«Диффузионное насыщение металлами и металлоидами»
- •«Коррозия металлов и меры борьбы с ней»
- •«Основы теории коррозии металлов»
- •Тема 1.4 Цветные металлы и их сплавы «Сплавы на медной основе»
- •«Легкие сплавы»
- •«Антифрикционные сплавы»
- •«Порошковая металлургия»
- •Раздел 2 Проводниковые материалы
- •Тема 2.1 Электротехнические характеристики проводниковых материалов «Проводниковые материалы высокой проводимости»
- •«Материалы высокого сопротивления»
- •«Жидкие и благородные металлы»
- •«Электроугольные изделия»
- •Тема 2.2 Сортамент проводов
- •«Обмоточные провода»
- •«Монтажные провода и кабели»
- •«Установочные провода»
- •«Кабельные линии»
- •Раздел 3Электроизоляционные материалы
- •Тема 3.1 Физика диэлектриков
- •«Основные электрические свойства диэлектриков»
- •«Поляризация диэлектриков»
- •«Влияние температуры на поляризацию диэлектриков»
- •«Электропроводность диэлектриков»
- •« Диэлектрические потери»
- •«Пробой диэлектриков»
- •«Электрохимический пробой»
- •Тема 3.2 Механические, тепловые и физико – химические характеристики диэлектриков
- •«Тепловые свойства диэлектриков»
- •«Физико-химические свойства диэлектриков»
- •Тема 3.3 Газообразные диэлектрики
- •«Пробой газов»
- •«Пробой жидких диэлектриков»
- •«Синтетические жидкие диэлектрики»
- •Тема 3.5 «Высокомолекулярные органические и элементоорганические диэлектрики»
- •«Природные смолы»
- •1. Природные смолы.
- •2. Твердые органические диэлектрики.
- •3. Полимеризационные синтетические полимеры
- •4. Поликонденсационные синтетические полимеры.
- •Тема 3.6 Пластмассы, пленочные материалы «Пластмассы»
- •«Пленочные материалы»
- •Тема 3.7 Резины
- •Тема 3.8 Лаки, эмали, компаунды
- •«Компауды»
- •Тема 3.9 Волокнистые диэлектрики «Бумаги и картоны»
- •«Лакоткани, ленты и лакированные трубки»
- •Тема 3.10 Электроизоляционная слюда и материалы на ее основе
- •«Слюдинитовые и слюдопластовые материалы»
- •«Электрокерамические материалы»
- •«Силикатные (неорганические) стекла»
- •Раздел 4 Полупроводниковые материалы
- •Тема 4.1 Основные свойства полупроводниковых материалов. Полупроводниковые материалы и их параметры
- •«Полупроводниковые материалы»
- •Раздел 5 Магнитные материалы
- •Тема 5.1 Основные характеристики магнитных материалов
- •«Металлические магнитомягкие материалы»
- •«Изолирующие и защитные покрытия трансформаторных сталей»
- •«Металлические магнитотвердые материалы»
- •«Ферриты»
- •Раздел 6 Неразъемные соединения
- •Тема 6.1 Сварка, пайка металлов. Припои и флюсы
- •«Дуговая сварка и резка»
- •«Плазменная резка, сварка и наплавка»
- •«Электрошлаковая сварка»
- •«Контактная сварка»
- •«Прочие виды сварки»
- •«Пайка конструкционных материалов»
- •Тема 6.2 Виды обработки металлов и неметаллических материалов
- •«Литье в многократные формы»
- •«Обработка металлов давлением»
- •«Прокатка, прессование и волочение»
- •«Ковка и штамповка»
«Синтетические жидкие диэлектрики»
Трансформаторное и другие электроизоляционные масла нефтяного происхождения обладают рядом преимуществ, которые и обеспечили им весьма широкое применение: они сравнительно дешевы и могут производиться заводами нефтеперерабатывающей промышленности в весьма больших количествах; при хорошей очистке их tg δ мал, электрическая прочность достаточно высока. Однако в некоторых случаях качество этих масел оказывается недостаточно высоким. Например, когда требуется полная пожарная безопасность и взрывобезопасность, маслонаполненные трансформаторы и другие аппараты применяться не могут. Интервал рабочих температур нефтяных масел, ограничиваемый, с одной стороны, температурой застывания или чрезмерного повышения вязкости и, с другой стороны, температурой начала быстрого теплового старения в данных условиях эксплуатации, сравнительно узок. Нефтяные масла склонны и к электрическому старению, т.е. они могут ухудшать свои свойства под действием электрического поля высокой напряженности. Для пропитки конденсаторов с целью получения повышенной емкости в данных габаритных размерах конденсатора желательно иметь полярный жидкий диэлектрик с более высоким, чем у неполярных нефтяных масел, значением ε.
Имеется ряд синтетических жидких диэлектриков, по тем или иным свойствам превосходящих нефтяные электроизоляционные масла. Рассмотрим важнейшие из них.
Хлорированные углеводороды получаются из различных углеводородов путем замены в их молекулах некоторых (или даже всех) атомов водорода атомами хлора. Наиболее широкое применение имеют полярные продукты хлорирования дифенила [молекула которого С12Н10 (или Н5С5—С5Н5) состоит из двух фенильных остатков], имеющие общий состав С12Н10-пС1п. Чаще всего применяются смеси различных изомеров хлорированных дифенилов со средней степенью хлорирования п от 3 до 6.
Из числа применяемых хлорированных дифенилов отметим совол, по составу близкий к пентахлордифенилу С12Н5С15.
1— совол после первой перегонки, 2 — после второй перегонки, 3 — после обработки адсорбентом силикагелем, 4 — после обработки адсорбентом — специальной глиной
Рисунок 26 Зависимости tg δ совола разной степени очистки от температуры при частоте 50 Гц
На рис.26 изображены зависимости tg δ совола различной степени очистки от температуры; наличие примесей существенно сказывается на потерях сквозной электропроводности при повышенных температурах, но практически не влияет на tg δ в области дипольного максимума потерь. Значение ε совола при 50 Гц и 20° С близко к 5, а при 90° С — к 4,1. Замена соволом нефтяного масла в производстве силовых бумажных конденсаторов позволяет снизить объем конденсатора при равной реактивной мощности примерно в два раза. Это дает большой экономический выигрыш, хотя совол и дороже масла. Совол более стабилен при работе в электрическом поле, чем масло. Недостатком конденсаторов, пропитанных соволом, является сильное уменьшение емкости при падении температуры ниже 0° С. Coвол - прозрачная бесцветная жидкость с плотностью около 1,5 Мг/м3. Благодаря высокой температуре застывания (+5° С) и значительной вязкости в области рабочих температур совол в чистом виде не может использоваться для заливки трансформаторов. Для этой цели совол должен разбавляться менее вязкими жидкостями, например гексахлорбутадиеном С12С = СС1 — СС1 = СС12; так, гексол — смесь 20% совола и 80% С4С16 — имеет ε около 3 и температуру застывания ниже минус 60° С.
Благоприятными свойствами обладают и смеси хлорированных дифенилов с другими хлорированными соединениями, применяемые для пропитки конденсаторов. Эти смеси, обозначаемые КЖ-30, КЖ-40 и КЖ-50, имеют соответственно значения ε, равные 6,0; 5,9 и 5,8, и температуры застывания минус 30, минус 45 и минус 50° С. Хлорированные дифенилы негорючи. Однако их недостатком является высокая токсичность как самих жидкостей и их паров, так и - в еще большей степени — газов, которые образуются при воздействии электрической дуги на хлорированные дифенилы. Поэтому, например, в Японии применение хлорированных дифенилов для пропитки конденсаторов запрещено законом.
Кремнийорганические жидкости обладают весьма малым углом диэлектрических потерь, низкой гигроскопичностью и повышенной нагревостойкостью. Для них характерна слабо выраженная зависимость вязкости от температуры. Как и другие кремнийорганические соединения, кремнийорганические жидкости весьма дороги, что ограничивает их применимость. В зависимости от характера радикалов, присоединенных к атомам Si, различают полиметилсилоксановые (ПМС), полиэтилсилоксановые (ПЭС) и полиметилфенилсилоксановые (ПМФС) жидкости. Эти жидкости имеют при 1 кГц и 20° С значение ε от 2,5 до 3,3 и tg δ 0,0001—0,0003; наивысшая допускаемая рабочая температура некоторых из этих жидкостей доходит до 250° С длительно и до 350° С кратковременно.
Фторорганические жидкости имеют весьма малый tg δ, ничтожно малую гигроскопичность и высокую нагревостойкость. Отдельные фторорганические жидкости могут длительно работать при температуре 200° С и выше.
Характерными свойствами фторорганических жидкостей являются малая вязкость, низкое поверхностное натяжение (что благоприятствует пропитке пористой изоляции), высокий температурный коэффициент объемного расширения (значительно больший, чем у других электроизоляционных жидкостей), сравнительно высокая летучесть. Последнее обстоятельство требует герметизации аппаратов, заливаемых фторорганическими жидкостями.
Фторорганические
жидкости способны обеспечивать
значительно более
интенсивный отвод
тепла потерь от охлаждаемых ими обмоток
и магнитопроводов, чем нефтяные масла
или кремнийорганические жидкости.
Существуют специальные конструкции
малогабаритных электротехнических
устройств с заливкой фторорганическими
жидкостями, в которых для улучшения
отвода тепла используется испарение
жидкости с последующей конденсацией
ее в охладителе и возвратом в устройство
(кипящая
изоляция); при
этом теплота испарения отнимается от
охлаждаемых обмоток, а наличие в
пространстве над жидкостью фторорганических
паров, в особенности под повышенным
давлением, значительно увеличивает
электрическую прочность газовой среды
в аппарате.
1 - кремнийорганическая жидкость, 2 — нефтяное трансформаторное масло, 3 —фторорганическая жидкость (С4F9)3N (температура кипения 178° С), 4 — фторорганическая жидкость (C4F9)2О (температура кипения 101° С)
Рисунок 27. Превышение температуры обмоток над температурой бака малогабаритного трансформатора в функции нагрузки трансформатора для различных заполняющих жидкостей
На рис. 27 представлены зависимости разности температур обмоток и бака малогабаритного трансформатора от его нагрузки для различных заполняющих бак жидкостей. Видно преимущество с точки зрения теплоотвода фторорганических жидкостей перед нефтяным маслом, и тем более перед кремнийорганической жидкостью. Переход кривой 4 через максимум объясняется достижением температуры кипения жидкости при повышении нагрузки.
Важным преимуществом фторорганических жидкостей по сравнению с кремнийорганическими является полная негорючесть и высокая дугостойкость (кремнийорганические жидкости, как и нефтяные масла, сравнительно легко загораются горят сильно коптящим пламенем). Как и кремнийорганические соединения, фторорганические жидкости пока еще весьма дороги.
