- •Раздел 1 Основы металловедения
- •Тема 1.1 Введение. Строение и свойства металлов и сплавов
- •«Кристаллическое строение металлов»
- •«Дефекты кристаллических решеток»
- •«Кристаллизация металлов»
- •«Основные сведения о сплавах»
- •«Диаграммы состояния»
- •«Диаграмма состав – свойство»
- •Тема 1.2 Сплавы железа с углеродом
- •«Чугун»
- •«Углеродистые и легированные стали»
- •«Влияние на сталь углерода, постоянных примесей и легирующих элементов»
- •«Классификация сталей»
- •«Маркировка сталей»
- •«Инструментальные стали»
- •«Стали и сплавы с особыми свойствами»
- •Тема 1. 3 Основы термической и химико – термической обработки металлов
- •«Превращения в стали при нагреве»
- •«Превращения в стали при охлаждении»
- •«Отжиг стали»
- •«Закалка стали»
- •«Химико-термическая обработка стали»
- •«Цементация стали»
- •«Азотирование, цианирование и нитроцементация стали»
- •«Диффузионное насыщение металлами и металлоидами»
- •«Коррозия металлов и меры борьбы с ней»
- •«Основы теории коррозии металлов»
- •Тема 1.4 Цветные металлы и их сплавы «Сплавы на медной основе»
- •«Легкие сплавы»
- •«Антифрикционные сплавы»
- •«Порошковая металлургия»
- •Раздел 2 Проводниковые материалы
- •Тема 2.1 Электротехнические характеристики проводниковых материалов «Проводниковые материалы высокой проводимости»
- •«Материалы высокого сопротивления»
- •«Жидкие и благородные металлы»
- •«Электроугольные изделия»
- •Тема 2.2 Сортамент проводов
- •«Обмоточные провода»
- •«Монтажные провода и кабели»
- •«Установочные провода»
- •«Кабельные линии»
- •Раздел 3Электроизоляционные материалы
- •Тема 3.1 Физика диэлектриков
- •«Основные электрические свойства диэлектриков»
- •«Поляризация диэлектриков»
- •«Влияние температуры на поляризацию диэлектриков»
- •«Электропроводность диэлектриков»
- •« Диэлектрические потери»
- •«Пробой диэлектриков»
- •«Электрохимический пробой»
- •Тема 3.2 Механические, тепловые и физико – химические характеристики диэлектриков
- •«Тепловые свойства диэлектриков»
- •«Физико-химические свойства диэлектриков»
- •Тема 3.3 Газообразные диэлектрики
- •«Пробой газов»
- •«Пробой жидких диэлектриков»
- •«Синтетические жидкие диэлектрики»
- •Тема 3.5 «Высокомолекулярные органические и элементоорганические диэлектрики»
- •«Природные смолы»
- •1. Природные смолы.
- •2. Твердые органические диэлектрики.
- •3. Полимеризационные синтетические полимеры
- •4. Поликонденсационные синтетические полимеры.
- •Тема 3.6 Пластмассы, пленочные материалы «Пластмассы»
- •«Пленочные материалы»
- •Тема 3.7 Резины
- •Тема 3.8 Лаки, эмали, компаунды
- •«Компауды»
- •Тема 3.9 Волокнистые диэлектрики «Бумаги и картоны»
- •«Лакоткани, ленты и лакированные трубки»
- •Тема 3.10 Электроизоляционная слюда и материалы на ее основе
- •«Слюдинитовые и слюдопластовые материалы»
- •«Электрокерамические материалы»
- •«Силикатные (неорганические) стекла»
- •Раздел 4 Полупроводниковые материалы
- •Тема 4.1 Основные свойства полупроводниковых материалов. Полупроводниковые материалы и их параметры
- •«Полупроводниковые материалы»
- •Раздел 5 Магнитные материалы
- •Тема 5.1 Основные характеристики магнитных материалов
- •«Металлические магнитомягкие материалы»
- •«Изолирующие и защитные покрытия трансформаторных сталей»
- •«Металлические магнитотвердые материалы»
- •«Ферриты»
- •Раздел 6 Неразъемные соединения
- •Тема 6.1 Сварка, пайка металлов. Припои и флюсы
- •«Дуговая сварка и резка»
- •«Плазменная резка, сварка и наплавка»
- •«Электрошлаковая сварка»
- •«Контактная сварка»
- •«Прочие виды сварки»
- •«Пайка конструкционных материалов»
- •Тема 6.2 Виды обработки металлов и неметаллических материалов
- •«Литье в многократные формы»
- •«Обработка металлов давлением»
- •«Прокатка, прессование и волочение»
- •«Ковка и штамповка»
« Диэлектрические потери»
Диэлектрические потери - это мощность электрического тока, рассеиваемая в диэлектрике в виде тепла. Численно диэлектрические потери характеризуются тангенсом угла диэлектрических потерь tgδ, где δ - угол, дополняющий до 90° угол сдвига фаз φ между векторами тока и напряжения в цепи с емкостью (δ = 90° - φ).
При приложении переменного напряжения к конденсатору с идеальным диэлектриком угол сдвига фаз между током и напряжением φ = 90° (рис. 19,а), δ = 0, тепловых потерь нет.
Для расчета потерь мощности в реальном диэлектрике при воздействии переменного напряжения используют эквивалентную схему, заменив конденсатор с реальным диэлектриком на идеальный конденсатор с параллельно (или последовательно) включенным активным сопротивлением (рис. 19,6). Потери мощности Ра (Вт) вызывает активная составляющая тока
Pа =U•Ia
Учитывая, что Iа =Iс ·tg δ, a Ic =U -ω-С, получаем
Ра =U2 ω C tgδ,
где (U- напряжение, В; ω - круговая частота тока, с -1.)
Рисунок 19 Схема определения диэлектрических потерь: а - конденсатор с идеальным диэлектриком (tgδ = 0); б - параллельная эквивалентная электрическая схема конденсатора с реальным диэлектриком (tgδ > 0)
Виды диэлектрических потерь:
потери от сквозной проводимости (на электропроводность);
релаксационные;
ионизационные;
резонансные.
Потери на электропроводность (от сквозной проводимости) - основные потери для неполярных диэлектриков. Они не зависят от частоты приложенного напряжения (Ра = const), tgδ уменьшается с частотой поля f по гиперболическому закону (рис. 20,а)
Рисунок 20 Зависимости диэлектрических потерь от частоты тока (а) и температуры (б)
tgδ=1,8•10 10
ε • f • ρ
где ρ - сопротивление, измеренное на постоянном токе;
ε - относительная диэлектрическая проницаемость на данной частоте.
Потери сквозной проводимости возрастают с ростом температуры по экспоненциальному закону (рис. 20,6).
Рат=А-ехр(-b /Т),
где A, b - постоянные материала
Релаксационные потери характерны для диэлектриков с замедленными видами поляризации. Они наблюдаются в полярных жидкостях с дипольно-релаксационной поляризацией, а также у линейных диэлектриков с ионно-релаксационным и электронно-релаксационным механизмами поляризации (неорганические стекла, полимеры, керамика, кристаллические вещества, с неплотной упаковкой атомов и др.).
Релаксационные потери сильно зависят от температуры и частоты поля. При низких температурах время релаксации поляризации велико (tо»1/ω)), tgδ мал. С повышением температуры степень поляризации молекул увеличивается, и tgδ возрастает. При температуре, соответствующей наибольшему развитию дипольно-релаксационной поляризации (время релаксации приближается к периоду изменения поля), tgδ достигает максимального значения. При дальнейшем повышении температуры время релаксации становится меньше времени периода изменения поля, ориентирующее влияние поля ослабевает, релаксационные потери уменьшаются, однако с учетом потерь на электропроводность общие потери возрастают. С ростом частоты поля релаксационные потери увеличиваются, так как возрастает отставание поляризации от изменения поля.
Ионизационные потери в диэлектрике обусловлены процессами ионизации под действием электрического поля. Они свойственны диэлектрикам в газообразном состоянии и проявляются в неоднородных электрических полях при напряженностях, превышающих значение, соответствующее началу ионизации данного газа.
Резонансные потери - это интенсивное поглощение энергии электромагнитного поля газом при определенной частоте. С ростом частоты поля релаксационные потери увеличиваются, так как возрастает отставание поляризации от изменения поля. Когда же частота настолько велика, что поляризованность диэлектрика становится незначительной, мало и значение tgδ. Однако на высоких частотах велико число циклов поляризации в единицу времени, и активная мощность, рассеиваемая в диэлектрике, остается практически постоянной, несмотря на уменьшение tgδ с ростом частоты.
