- •Раздел 1 Основы металловедения
- •Тема 1.1 Введение. Строение и свойства металлов и сплавов
- •«Кристаллическое строение металлов»
- •«Дефекты кристаллических решеток»
- •«Кристаллизация металлов»
- •«Основные сведения о сплавах»
- •«Диаграммы состояния»
- •«Диаграмма состав – свойство»
- •Тема 1.2 Сплавы железа с углеродом
- •«Чугун»
- •«Углеродистые и легированные стали»
- •«Влияние на сталь углерода, постоянных примесей и легирующих элементов»
- •«Классификация сталей»
- •«Маркировка сталей»
- •«Инструментальные стали»
- •«Стали и сплавы с особыми свойствами»
- •Тема 1. 3 Основы термической и химико – термической обработки металлов
- •«Превращения в стали при нагреве»
- •«Превращения в стали при охлаждении»
- •«Отжиг стали»
- •«Закалка стали»
- •«Химико-термическая обработка стали»
- •«Цементация стали»
- •«Азотирование, цианирование и нитроцементация стали»
- •«Диффузионное насыщение металлами и металлоидами»
- •«Коррозия металлов и меры борьбы с ней»
- •«Основы теории коррозии металлов»
- •Тема 1.4 Цветные металлы и их сплавы «Сплавы на медной основе»
- •«Легкие сплавы»
- •«Антифрикционные сплавы»
- •«Порошковая металлургия»
- •Раздел 2 Проводниковые материалы
- •Тема 2.1 Электротехнические характеристики проводниковых материалов «Проводниковые материалы высокой проводимости»
- •«Материалы высокого сопротивления»
- •«Жидкие и благородные металлы»
- •«Электроугольные изделия»
- •Тема 2.2 Сортамент проводов
- •«Обмоточные провода»
- •«Монтажные провода и кабели»
- •«Установочные провода»
- •«Кабельные линии»
- •Раздел 3Электроизоляционные материалы
- •Тема 3.1 Физика диэлектриков
- •«Основные электрические свойства диэлектриков»
- •«Поляризация диэлектриков»
- •«Влияние температуры на поляризацию диэлектриков»
- •«Электропроводность диэлектриков»
- •« Диэлектрические потери»
- •«Пробой диэлектриков»
- •«Электрохимический пробой»
- •Тема 3.2 Механические, тепловые и физико – химические характеристики диэлектриков
- •«Тепловые свойства диэлектриков»
- •«Физико-химические свойства диэлектриков»
- •Тема 3.3 Газообразные диэлектрики
- •«Пробой газов»
- •«Пробой жидких диэлектриков»
- •«Синтетические жидкие диэлектрики»
- •Тема 3.5 «Высокомолекулярные органические и элементоорганические диэлектрики»
- •«Природные смолы»
- •1. Природные смолы.
- •2. Твердые органические диэлектрики.
- •3. Полимеризационные синтетические полимеры
- •4. Поликонденсационные синтетические полимеры.
- •Тема 3.6 Пластмассы, пленочные материалы «Пластмассы»
- •«Пленочные материалы»
- •Тема 3.7 Резины
- •Тема 3.8 Лаки, эмали, компаунды
- •«Компауды»
- •Тема 3.9 Волокнистые диэлектрики «Бумаги и картоны»
- •«Лакоткани, ленты и лакированные трубки»
- •Тема 3.10 Электроизоляционная слюда и материалы на ее основе
- •«Слюдинитовые и слюдопластовые материалы»
- •«Электрокерамические материалы»
- •«Силикатные (неорганические) стекла»
- •Раздел 4 Полупроводниковые материалы
- •Тема 4.1 Основные свойства полупроводниковых материалов. Полупроводниковые материалы и их параметры
- •«Полупроводниковые материалы»
- •Раздел 5 Магнитные материалы
- •Тема 5.1 Основные характеристики магнитных материалов
- •«Металлические магнитомягкие материалы»
- •«Изолирующие и защитные покрытия трансформаторных сталей»
- •«Металлические магнитотвердые материалы»
- •«Ферриты»
- •Раздел 6 Неразъемные соединения
- •Тема 6.1 Сварка, пайка металлов. Припои и флюсы
- •«Дуговая сварка и резка»
- •«Плазменная резка, сварка и наплавка»
- •«Электрошлаковая сварка»
- •«Контактная сварка»
- •«Прочие виды сварки»
- •«Пайка конструкционных материалов»
- •Тема 6.2 Виды обработки металлов и неметаллических материалов
- •«Литье в многократные формы»
- •«Обработка металлов давлением»
- •«Прокатка, прессование и волочение»
- •«Ковка и штамповка»
«Диффузионное насыщение металлами и металлоидами»
Диффузионное насыщение металлами (алюминием, хромом и др.) и металлоидами (кремнием, бором и др.), называемое диффузионной металлизацией, проводят с целью повышения жаростойкости (до 1000 °С), коррозионной стойкости, твердости и износостойкости деталей.
Насыщение (при 1000—1200 °С) проводят в твердых, жидких и газовых средах.
При насыщении в твердой среде детали помещают в ящик со смесью ферросплава (например, ферроалюминия, феррохрома и др.) и хлористого аммония NH4C1. При нагреве, в связи с взаимодействием! ферросплава и хлористого водорода НС1, получающегося при разложении NH4CI, образуется летучее соединение (хлорид) хлора с металлом (металлоидом), например хлорид алюминия А1С13, хлорид хрома СгС12 и др., которое при контакте с деталью распадается с образованием атомов данного металла (металлоида), проникающих в сталь.
При насыщении в жидкой среде детали нагревают в ванне с расплавленным металлом (например, алюминием и др.).
При насыщении в газовой среде детали нагревают в среде летучих хлоридов различных металлов (металлоидов).
«Коррозия металлов и меры борьбы с ней»
Коррозией металлов и сплавов называют процесс превращения их в окисленное состояние, разрушение под влиянием внешней среды. Примером коррозии может служить ржавление железа на воздухе, разъедание подводных частей судов, порча химической аппаратуры от действия различных растворов, а также кислот и щелочей. Коррозия приводит изделия в негодность. Потери от коррозии сплавов на основе железа велики: каждая пятая тонна из выплавленных черных металлов расходуется на восполнение потерь по изделиям, пришедшим в негодность от коррозии.
«Основы теории коррозии металлов»
По виду коррозионного процесса различают электрохимическую, химическую и смешанную коррозию; в зависимости от коррозионной среды ее относят к природной (под действием атмосферы, морской, речной, озерной воды, почвы) или промышленной (под действием солей, кислот, щелочей). По характеру коррозионного разрушения выделяют равномерную (рис. 13, а), неравномерную (б), избирательную, воздействующую на определенную фазу (в), пятнами (г), язвенную (д), точечную (е), сквозную (ж), ножевую (з), трещинами (и), межкристаллитную (к), подповерхностную (л) и послойную (м) коррозии.
Рисунок 13 Виды коррозийных разрушений
Электрохимической коррозией называют процесс самопроизвольного взаимодействия металла с жидкостью—электролитом, в ходе которого последовательно протекает окисление металла и восстановление окислительного компонента; окислительный компонент при этом не входит в состав продукта коррозии. По процессу электрохимической коррозии корродирует подавляющее большинство металлических изделий. Электролитами могут быть всевозможные электропроводные жидкости, чаще всего щелочи, водные растворы кислот, солей, газов. При соприкосновении металла с электролитом ионы с поверхности металла переходят в электролит, определяя возникновение между ними электродвижущей силы. В отличие от обычного растворения (например, соли в воде), которое прекращается, когда раствор становится насыщенным, при растворении металла в электролит переходят лишь положительно заряженные ионы, в результате чего электролит, находящийся в контакте с металлом, заряжается положительно, а металл — отрицательно (за счет оставшихся электронов).
Металлы обладают различной способностью переходить в раствор, т. е. различной упругостью растворения. Поэтому, если пластинки (электроды) разных металлов поместить в один электролит, то они будут иметь различные потенциалы, причем, чем больше ионов металла перейдет в раствор, тем больше будет его отрицательный потенциал.
Если соединить проводником электроды различных металлов, находящихся в электролите, то образуются гальванические пары, где анодом является электрод с более низким потенциалом, а катодом — электрод с более высоким потенциалом. В гальванической паре переход ионов анода в раствор продолжается до полного растворения пластинки анода. Так, если пластинку цинка и пластинку железа поместить в электролит и соединить их проводником, то цинк будет растворяться до полного разрушения пластинки.
Структура металлов и сплавов в большинстве случаев неоднородна и состоит из двух фаз (например, феррита и цементита). При погружении такого сплава в электролит отдельные фазы (зерна) его будут иметь различные потенциалы, а так как эти зерна соединены друг с другом через массу металла, то сплав будет представлять собой множество гальванических микропар. Из сказанного следует, что чистые металлы и однофазные сплавы должны иметь большую коррозионную стойкость, чем сплавы, состоящие из смеси фаз. Опыт подтверждает это; например, сталь, закаленная на мартенсит, корродирует значительно меньше, чем та же сталь после отжига или отпуска (состояние перлита, сорбита, троостита). Однако и однофазные металлы имеют дефекты структуры- дислокации, субзерна, загрязнения и примеси, обладающие различными значениями электродного потенциала; то же относится и к наклепанным участкам металла. Все это определяет электрохимическую гетерогенность металлов. Поэтому электрохимическая коррозия может наблюдаться также и у однофазных металлов.
Слой электролита при коррозии может быть весьма незначительным: достаточно небольшой конденсации влаги из воздуха на поверхности металла, как начинается процесс коррозии, поэтому электрохимическая коррозия наблюдается и в закрытых помещениях.
Наличие сплошной прочной оксидной пленки предохраняет металл и от электрохимической коррозии, так как изолирует его от действия электролита. Этим объясняется тот факт, что некоторые металлы (например, алюминий, хром, титан), имеющие весьма низкие электродные потенциалы, обладают большей коррозионной стойкостью, чем, например, железо, имеющее более высокий электродный потенциал, но не образующее при коррозии сплошной прочной оксидной пленки. Металлы, на поверхности которых образуются прочные, предохраняющие от коррозии пленки, называют пассивирующимися.
Химической коррозией называют процесс самопроизвольного взаимодействия металла с окислительным компонентом коррозионной среды, не зависящий от электродного потенциала металла. Продуктом коррозии является химическое соединение металла с окислительным компонентом, Химическая коррозия протекает при действии на металл сухих газов, например, продуктов сгорания топлива, воздуха или жидких органических веществ (бензина, мазута, смолы и др.).
В чистом виде химическая коррозия наблюдается, например, при горячей обработке металлов (продуктом является окалина), на деталях топок и котлов, тепловых двигателей, танкеров, газо- и нефтепроводов и пр.
Атмосферная коррозия совмещает особенности химической и
электрохимической коррозии.
Мерой коррозионной стойкости металлов является скорость коррозии в данной среде и данных условиях. Скорость коррозии выражают массой металла в граммах, превращенной в продукты коррозии за единицу времени (1 ч) и отнесенной к единице его поверхности (1 м2). На скорость коррозии влияют состав металлов, их механическая и термическая обработка, а также среда (воздух, вода, растворы кислот), температура, давление и характер нагрузки.
Наиболее опасной является межкристаллитная коррозия. Она распространяется по границам зерен и мало заметна при осмотре, однако изделия становятся негодными, так как нарушается металлическая сплошность их и резко снижается прочность.
«Способы предохранения металлов от коррозии»
Все конструкционные и инструментальные металлы и сплавы подвержены коррозии. Сталь и чугун составляют основную массу металлических изделий, поэтому защита их от коррозии требует особого внимания.
Производство коррозионно-стойких сплавов (например, высоколегированной хромовой и хромоникелевой стали) само по себе уже является способом борьбы с коррозией. Нержавеющая сталь и чугун, так же как и коррозионно-стойкие сплавы цветных металлов, — весьма ценный антикоррозионный материал, однако применение таких сплавов не всегда возможно из-за их высокой стоимости или по техническим соображениям.
На практике применяются следующие способы защиты металлических изделий от коррозии: металлические и неметаллические покрытия, ингибиторы коррозии, электрохимическая защита.
Металлические покрытия широко применяют для защиты от коррозии изделий и деталей машин, приборов, металлоконструкций. Наряду с защитой от коррозии металлические покрытия повышают износостойкость, жаропрочность.
Различают анодные и катодные металлические покрытия. Анодные покрытия производят металлами, электродный потенциал которых в данном электролите ниже потенциала покрываемого (основного) металла, например, покрытие железа цинком. Анодное покрытие защищает основной металл готовых изделий электрохимически. Срок службы анодных покрытий возрастает при увеличении их толщины. Катодные покрытия производят металлами, электродный потенциал которых в данном электролите выше потенциала основного металла. Катодные покрытия создают механическую защиту основного металла. Нарушение сплошности покрытия (разъединение, механические повреждения) влечет за собой усиленную электрохимическую коррозию основного металла. Во многих случаях сплошность покрытия может сохраняться довольно долго; столь же продолжительной будет и защита основного металла. Примером катодного покрытия является никелирование сплавов железа.
Металлические покрытия наносят гальваническим, термодиффузионным, горячим способами, а также напылением, плакированием, припеканием.
Галъванические покрытия получают при электрокристаллизации — осаждении на изделии — катоде положительно заряженных ионов металлов из электролитов при пропускании через них постоянного тока. В качестве анодов применяют металлы покрытия (хром, никель, медь, цинк, олово, серебро, золото), которые в ходе процесса растворяются в электролите и пополняют его катионами, разряжающимися на катоде. При гальванических покрытиях обеспечивается нанесение покрытия из любого металла на заготовки также из любого металла.
Наряду с гальваническими существуют химические покрытия, осаждаемые на поверхность заготовки без внешней поляризации, когда в разогретый электролит загружают холодные заготовки.
Термодиффузионный способ состоит в поглощении защитного металла поверхностным слоем заготовок и осуществляется при высоких температурах. Этим способом производят алитирование (защитный металл — алюминий), хромирование, силицирование (защитный элемент — кремний).
Горячий способ применяют для нанесения тонкого слоя легкоплавких металлов: олова (лужение), цинка (цинкование) или свинца (свинцевание). Очищенную заготовку при этом погружают в расплавленный защитный металл, который смачивает ее.
Лужение применяют в основном в производстве белой жести и для медной посуды; цинкование — для проволоки, кровельного железа, труб; свинцевание — для химической аппаратуры и труб.
Напыление плазменной струей получает все большее распространение. Напыляемый материал расплавляется в потоке газоразрядной плазмы аргона, азота, аммиака или водорода. Материалом покрытия могут являться металлы (Zn, Al, Си, Ti, W, Сг, Мо и др.), оксиды (А1203, С1а03, Si02 и др.), карбиды (В4С, TiC, NbC и др.), бориды, силициды, нитриды металлов, которые применяют в виде проволоки и прутков (диаметром 0,5—3 мм) или порошков сферической формы (диаметром 20— 100 мкм).
Напыление используют для изделий из стали, сплавов алюминия, меди, титана и других металлов. Преимуществами плазменного способа являются универсальность, формование покрытий высокой плотности при хорошей сцепляемости с основным металлом, легкость управления процессом.
Плакирование (термомеханическое покрытие) заключается в совместной горячей прокатке или волочении основного и защитного металлов. Сцепление между металлами осуществляется в результате диффузии под влиянием совместной деформации горячей заготовки. Защищаемый металл (сталь, сплавы титана) покрывают с одной или с обеих сторон медью, томпаком, коррозионно-стойкой сталью, алюминием.
Припекание (металлирование) — это новый способ нанесения покрытий, образующихся из порошков металлов (железных, медных, титановых, никелевых, хромовых), а также нитридов, боридов, силицидов металлов и пластмасс. Операция припекания состоит в нанесении на подготовленную поверхность заготовки порошкового слоя и нагрева, в процессе которого порошок спекается, образуя сплошной защитный слой, и одновременно припекается к поверхности основного металла.
Помимо защиты от коррозии, припекание (металлирование) используют для восстановления изношенных поверхностных слоев деталей.
Неметаллические покрытия относятся покрытия лаками, красками, смазкой, эмалями, а также резиной и эбонитом.
Лакокрасочные покрытия имеют самое широкое распространение для защиты металлоконструкций, машин и механизмов в различных агрессивных средах. Входящие в состав лакокрасочных покрытий пленкообразователи обеспечивают получение сплошной, эластичной и беспористой пленки, изолирующей металл от коррозионной среды.
Технологический процесс лакокрасочного покрытия включает в себя подготовку поверхности, приготовление лакокрасочных материалов, нанесение покрытий и сушку. Лакокрасочные материалы наносят кистью, валиками, распылением, окунанием, струйным обливом.
Срок службы противокоррозионных лакокрасочных покрытий от 1 до 5 лет. К недостаткам этих покрытий относится снижение эффективности защиты со временем в результате порообразования и проникновения агрессивной среды, а также обгорание при высоких температурах.
В качестве смазок применяют минеральные масла и жиры. Защита смазкой производится при хранении и перевозке металлических изделий. Смазку периодически обновляют.
Покрытие резиной и эбонитом называют гуммированием; его применяют для защиты химической аппаратуры (сосуды, трубопроводы, травильные и гальванические ванны, краны, цистерны) от коррозионного действия кислот, щелочей, растворов солей. Для гуммирования поверхности заготовок обезжиривают, покрывают резиновым клеем и листами сырой резины или эбонита, затем производят вулканизацию и отделку.
Ингибиторами коррозии являются некоторые органические и неорганические соединения, которые вводят в небольших количествах в агрессивную среду, чем обеспечивается предотвращение или уменьшение скорости коррозии вследствие изменения механизма и кинетики электродных процессов. Ингибиторы используют для защиты металлоконструкций буровых скважин, трубопроводов, теплообменных аппаратов, химического оборудования.
Химическая защита состоит в искусственном создании на поверхности изделий защитных неметаллических пленок (чаще всего оксидных) за счет окисления поверхностного слоя металла. Наведение оксидных пленок называют оксидированием, а на железе и стали — воронением в связи с сине-черным цветом покрытия. Для воронения сталей наиболее распространен способ погружения заготовок в растворы азотно-кислых солей при температуре 140 °С. Оксидирование применяют для алюминия, магния и их сплавов. Этим способом осуществляют защиту изделий от воздуха и осадков. Для изделий, подверженных действию более агрессивных сред, этот способ неприемлем. Кроме оксидных пленок, на стальных изделиях наводят пленки фосфорно-кислых солей железа и марганца (фосфатирование); эти пленки в сравнении с оксидными являются более прочными.
Электрохимическая защита разделяется на протекторную и катодную.
Протекторную защиту применяют для изделий, соприкасающихся с электролитами. Вблизи поверхности, подлежащей защите, устанавливают протекторы из металла, имеющего в данном электролите
меньший электродный потенциал, чем потенциал основного металла. При этом образуется гальваническая пара протектор — основной металл, в которой протектор будет анодом, а основной металл — катодом. В таких условиях протектор будет постепенно разрушаться, защищая тем самым основной металл. После полного разрушения протектор заменяют.
Так, например, с помощью цинкового протектора защищают от коррозии подводные части судна (винты и киль).
Катодную защиту применяют для подземных металлических сооружений (трубопроводов, кабелей и т. д.), которые присоединяются к отрицательному полюсу источника постоянного тока; положительный полюс заземлен.