
- •1. Клеточная теория.
- •2. Опишите структуру полирибосомы.
- •8. Назовите структуру начальной стадии компактизации днк.
- •9. Определение координат клеток на препарате при микроскопировании.
- •10. Химический состав клетки и ее компонентов.
- •11. Назовите последовательность фаз митоза.
- •12. Определение размеров клетки при микроскопировании.
- •13. Митоз и его фазы.
- •16. Клеточный цикл. Мейоз и его фазы.
- •17. Назовите элементы клетки, выявляемые световым и электронным микроскопами.
- •18. Определение степени увеличения микрообъектов при микроскопировании.
- •19. Рибосомы: устройство и функции. Общая схема синтеза белков в клетках.
- •20. Назовите комплементарные пары нуклеотидов днк.
- •21. Устройство светового микроскопа и его назначение.
- •22. Структура и химический состав цитоплазматических мембран, их синтез и компановка.
- •24. Способы освещения объектов при микроскопировании клеток.
- •25. Строение, состав и функции цитоплазматической мембраны клеток.
- •26. Назовите виды рнк, синтезируемые в ядрах клеток.
- •27. Роль препаратоводителя при микроскопировании клеток.
- •28. Типы хроматина в интерфазном ядре и его состав.
- •29. Назовите последовательность фаз мейоза эукариотических клеток.
- •30. Применение объективов разного увеличения при микроскопировании клеток.
- •31. Лизосомы: общие характеристики и морфологическая гетерогенность.
- •32. Назовите уровни компактизации днк-хроматина.
- •33. Цель использования светофильтров при микроскопировании биообъектов.
- •34. Аппарат Гольджи: тонкое строение и основные функции.
- •35. Перечислите мембранные органеллы клеток.
- •36. Камера Горяева, ее применение и характеристики.
- •37. 38. Митохондрии. Структура, состав и ауторепродукция. Роль митохондрий в процессах окислительного фосфорилирования.
- •39. Назовите компоненты клеточного ядра.
- •40. Обьект-микрометр и его применение при определении размеров биообъектов.
- •41. Эндоплазматический ретикулум в клетках эукариот: его структура и функции.
- •42. Назовите немембранные органеллы эукариотических клеток.
- •43. Окуляр-шкала и ее применение при микроскопировании клеток.
- •44. 45. Строение и функции цитоскелетных элементов клеток: микрофиламентов, микротрубочек, промежуточных филоментов.
- •46. Перечислите виды пластид в растительных клетках.
- •47. Значение настройки освещения при микроскопировании клеток.
- •48. Мейоз и его роль в жизнедеятельности высших организмов. Фазы мейоза.
- •49. Перечислите структурные компоненты клеток прокариот.
- •50. Устройство и роль осветителя при микроскопировании клеток.
26. Назовите виды рнк, синтезируемые в ядрах клеток.
Все виды РНК синтезируются в ядре клетки по тому же принципу комплементарности на одной из цепей ДНК.
27. Роль препаратоводителя при микроскопировании клеток.
28. Типы хроматина в интерфазном ядре и его состав.
Результатом взаимодействия ДНК с белками в составе хроматина является ее компактизация. Суммарная длина ДНК, заключенной в ядре клеток человека, приближается к 1 м, тогда как средний диаметр ядра составляет 10 мкм. Длина молекулы ДНК, заключенной в одной хромосоме человека, в среднем равняется ~4 см. В то же время длина метафазной хромосомы составляет 4 мкм. Следовательно, ДНК метафазных хромосом человека компактизована по длине, по крайней мере, в 104 раз. Степень компактизации ДНК в интерфазных ядрах значительно ниже и неравномерна в отдельных генетических локусах.
С функциональной точки зрения различают эухроматин и гетерохроматин .
Эухроматин характеризуется меньшей по сравнению с гетерохроматином компактизацией ДНК, и в нем главным образом локализуются активно экспрессирующиеся гены.
29. Назовите последовательность фаз мейоза эукариотических клеток.
См. мейоз
30. Применение объективов разного увеличения при микроскопировании клеток.
31. Лизосомы: общие характеристики и морфологическая гетерогенность.
Лизосомы (греч. “лизео” - растворяю, “сома” - тело).
Лизосомы были открыты в 1955 г. французским ученым де Дювом при изучении клеток печени методом фракционного центрифугирования.
Применение биохимических, цитохимических и электронно-микроскопических методов позволило детально изучить строение, функционирование и происхождение этих структур. Лизосомы представляют собой пузырьки диаметром от 0,2 до 1 мкм, содержащие различные ферменты. Всего в лизосомах обнаружено около 50 гидролитических ферментов (протеиназы, нуклеазы, глюкозидазы, фосфатазы, липазы и др.). Маркерным ферментом является кислая фосфатаза.
Среди лизосом можно выделить три основных типа: первичные лизосомы, вторичные лизосомы, остаточные тельца.
Функции лизосом:
Внутриклеточное пищеварение. Это основная функция лизосом. За эту функцию лизосомы часто называют "пищеварительными станциями" клетки.
Изменение клеточных продуктов. Например, благодаря лизосомам, в клетках щитовидной железы происходит преобразование тироглобулина в тироксин.
Переваривание дефектных клеточных органоидов. В некоторых случаях лизосомы также могут переварить отдельные органы. Например, исчезновение хвоста у головастика лягушек происходит под действием ферментов лизосом.
32. Назовите уровни компактизации днк-хроматина.
Первый уровень компактизации ДНК - нуклеосомный. Если подвергнуть действию нуклеазы хроматин, то он и ДНК, подвергаются распаду на регулярно повторяющиеся структуры. После нуклеазной обработки из хроматина путем центрифугирования выделяют фракцию частиц со скоростью седиментации 11S. Частицы 11S содержат ДНК около 200 нуклеотидных пар и восемь гистонов. Такая сложная нуклеопротеидная частица получила название Нуклеосомы. В ней гистоны образуют белковую основу-сердцевину, по поверхности которой располагается ДНК. ДНК образуют участок, с белками сердцевины не связанный, — Линкер, Который, соединяя две соседние нуклеосомы, переходит в ДНК следующей нуклеосомы. Они образуют «бусины», глобулярные образования около 10 нм, сидящие друг за другом на вытянутых молекулах ДНК. Второй уровень компактизации—30 нм фибрилла. ПЕрвый, нуклеосомный, уровень компактизации хроматина играет регуляторную и структурную роль, обеспечивая плотность упаковки ДНК в 6—7 раз. В митотических хромосомах и в интерфазных ядрах выявляются фибриллы хроматина с диаметром 25—30 нм. Выделяют соленоидный тип укладки нуклеосом: нить плотно упакованных нуклеосом диаметром 10 нм образует витки с шагом спирали около 10 нм. На один виток такой суперспирали приходится 6—7 нуклеосом. В результате такой упаковки возникает фибрилла спирального типа с центральной полостью. Хроматин в составе ядер имеет 25-нм фибриллы, которая состоит из сближенных глобул того же размера — Нуклеомеров. Эти нуклеомеры называют сверхбусинами («супербиды»). Основная фибрилла хроматина диаметром 25 нм представляет собой линейное чередование нуклеомеров вдоль компактизованной молекулы ДНК. В составе нуклеомера образуются два витка нуклеосомной фибриллы, по 4 нуклеосомы в каждом. Нуклеомерный уровень укладки хроматина обеспечивает 40-кратное уплотнение ДНК. Нуклесомный и нуклеомерный (супербидный) уровни компактизации ДНК хроматина осуществляются за счет гистоновых белков. Петлевые домены ДНК —третий уровень структурной организации хроматина. В высших уровнях организации хроматина специфические белки связываются с особыми участками ДНК, которая в местах связывания образует большие петли, или домены. В некоторых местах есть сгустки конденсированного хроматина, розетковидные образования, состоящие из многих петель 30 нм-фибрилл, соединяющихся в плотном центре. Средний размер розеток достигает 100—150 нм. Розетки фибрилл хроматина—Хромомеры. Каждый хромомер состоит из нескольких содержащих нуклеосомы петель, которые связаны в одном центре. Хромомеры связаны друг с другом участками нуклеосомного хроматина. Такая петельно-доменная структура хроматина обеспечивает структурную компактизацию хроматина и организует функциональные единицы хромосом — репликоны и транскрибируемые гены.