
- •Часть 2
- •Раздел 1. Элементы теории погрешностей 7
- •Раздел 2. Решение систем линейных алгебраических уравнений 15
- •Раздел 3. Численное решение нелинейных уравнений 43
- •Раздел 4. Решение систем нелинейных уравнений 54
- •Раздел 5. Аппроксимация функций 60
- •Раздел 6. Численное интегрирование 81
- •Раздел 7. Численное дифференцирование 97
- •Раздел 8. Обыкновенные дифференциальные уравнения 106
- •Основы численных методов введение
- •1. Этапы решения технических задач на эвм
- •2. Методы реализации математических моделей
- •Раздел 1. Элементы теории погрешностей
- •1.1. Постановка задачи
- •1.2. Источники погрешностей
- •1.3. Приближенные числа и оценка их погрешностей
- •1.4. Правила записи приближенных чисел
- •1.5. Задачи теории погрешностей
- •1.6. Понятия устойчивости, корректности постановки задач и сходимости численного решения
- •1.7. Некоторые обобщенные требования к выбору численных методов
- •Раздел 2. Решение систем линейных алгебраических уравнений
- •2.1. Основные понятия и определения
- •2.2. Методы решения слау
- •2.2.1. Прямые методы решения слау
- •1. Правило Крамера
- •2. Метод обратных матриц
- •3. Метод Гаусса
- •4. Модифицированный метод Гаусса
- •5. Метод прогонки
- •6. Метод квадратного корня
- •2.2.2. Итерационные методы решения слау
- •1. Метод простой итерации
- •2. Метод Зейделя
- •2.3. Вычисление определителей высоких порядков
- •2.4. Вычисление обратных матриц
- •2. Другой подход к определению обратной матрицы а–1
- •3. Обращение матрицы а посредством треугольных матриц
- •2.5. Применение метода итераций для уточнения элементов обратной матрицы
- •Раздел 3. Численное решение нелинейных уравнений
- •3.1. Постановка задачи
- •3.2. Отделение корней
- •3.2.1. Метод половинного деления
- •3.2.2. Графическое отделение корней
- •3.3. Итерационные методы уточнения корней
- •3.3.1. Метод простой итерации
- •3.3.2. Метод Ньютона (касательных)
- •3.3.3. Метод секущих
- •3.3.4. Метод деления отрезка пополам
- •3.3.5. Метод хорд
- •3.4. Общий алгоритм численных методов решения нелинейных уравнений
- •Раздел 4. Решение систем нелинейных уравнений
- •4.1. Постановка задачи
- •4.2. Метод простой итерации
- •4.2.1. Условия сходимости метода простой итерации для нелинейных систем уравнений второго порядка
- •4.2.2. Общий случай построения итерирующих функций
- •4.3. Метод Ньютона для систем двух уравнений
- •4.4. Метод Ньютона для систем n-го порядка с n неизвестными
- •Раздел 5. Аппроксимация функций
- •5.1. Постановка задачи
- •5.2. Интерполирование функций
- •5.3. Типовые виды локальной интерполяции
- •5.3.1. Линейная интерполяция
- •5.3.2. Квадратичная (параболическая) интерполяция
- •5.4. Типовые виды глобальной интерполяции
- •5.4.1. Интерполяция общего вида
- •5.4.2. Интерполяционный многочлен Лагранжа
- •1. Формула Лагранжа для произвольной системы интерполяционных узлов
- •2. Полином Лагранжа на системе равноотстоящих интерполяционных узлов
- •5.4.3. Интерполяционный многочлен Ньютона
- •1. Интерполяционный многочлен Ньютона для системы равноотстоящих узлов
- •2. Интерполяционный многочлен Ньютона для системы произвольно расположенных узлов
- •3. Локальная интерполяция
- •3.1. Линейная интерполяция
- •3.2. Квадратичная интерполяция
- •4. Глобальная интерполяция
- •4.1. Интерполяционный многочлен Лагранжа
- •4.2. Интерполяционный многочлен Ньютона
- •5.5. Сплайны
- •5.6. Сглаживание результатов экспериментов
- •1. Метод выбранных точек
- •2. Метод средних
- •3. Метод наименьших квадратов
- •5.7. Вычисление многочленов
- •Раздел 6. Численное интегрирование
- •6.1. Постановка задачи
- •6.1.1. Понятие численного интегрирования
- •6.1.2. Понятие точной квадратурной формулы
- •6.2. Простейшие квадратурные формулы
- •6.2.1. Формула прямоугольников
- •6.2.2. Формула трапеций
- •6.2.3. Формула Симпсона
- •6.3. Составные квадратурные формулы с постоянным шагом
- •6.3.1. Составная формула средних
- •6.3.2. Формула трапеций
- •6.3.3. Формула Симпсона
- •6.4. Выбор шага интегрирования для равномерной сетки
- •6.4.1. Выбор шага интегрирования по теоретическим оценкам погрешностей
- •6.4.2. Выбор шага интегрирования по эмпирическим схемам
- •1. Двойной пересчет
- •2. Схема Эйткина
- •3. Правило Рунге
- •4. Другие оценки погрешности
- •6.5. Составные квадратурные формулы с переменным шагом
- •6.6. Квадратурные формулы наивысшей алгебраической точности (формула Гаусса)
- •Раздел 7. Численное дифференцирование
- •7.1. Постановка задачи
- •7.2. Аппроксимация производных посредством локальной интерполяции
- •1. Формула левых разностей
- •2. Формула правых разностей
- •3. Формула центральных разностей
- •7.3. Погрешность численного дифференцирования
- •7.4. Аппроксимация производных посредством глобальной интерполяции
- •7.4.1. Аппроксимация посредством многочлена Ньютона
- •7.4.2. Вычисление производных на основании многочлена Лагранжа
- •7.5. Метод неопределенных коэффициентов
- •7.6. Улучшение аппроксимации при численном дифференцировании
- •Раздел 8. Обыкновенные дифференциальные уравнения
- •8.1. Постановка задачи
- •8.2. Задача Коши для оду
- •8.3. Численные методы решения задачи Коши
- •8.3.1. Одношаговые методы решения задачи Коши
- •1. Метод Эйлера
- •2. Метод Эйлера с пересчетом
- •3. Метод Эйлера с последующей итерационной обработкой
- •4. Метод Рунге-Кутта
- •8.3.2. Многошаговые методы решения задачи Коши
- •1. Семейство методов Адамса
- •2. Многошаговые методы, использующие неявные разностные схемы
- •3. Повышение точности результатов
1.5. Задачи теории погрешностей
Прямая задача теории погрешностей
Пусть в некоторой области G n-мерного числового пространства рассматривается непрерывно дифференцируемая функция
y = f(x1, ... , xn).
Пусть в точке (x1, ..., xn), принадлежащей области G, нужно вычислить ее (функции) значение. Известны лишь приближенные значения аргументов (а1, ..., аn) G, и их погрешности. Естественно, что это будет приближенное значение
y* = f(а1, а2, ... , аn).
Нужно оценить его абсолютную погрешность
y* = | y
– y* |
.
Для функции одного аргумента y = f(x) ее абсолютная погрешность, вызываемая достаточно малой погрешностью а, оценивается величиной
y* =
.
Обратная задача теории погрешностей
Она состоит в определении допустимой погрешности аргументов по допустимой погрешности функции.
Для функции одной переменной y = f(x) абсолютную погрешность можно вычислить приближенно по формуле
.
Для функций нескольких переменных y = f(x1, ... , xn) задача решается при следующих ограничениях.
Если значение одного из аргументов значительно труднее измерить или вычислить с той же точностью, что и значение остальных аргументов, то погрешность именно этого аргумента и согласовывают с требуемой погрешностью функции.
Если значения всех аргументов можно одинаково легко определить с любой точностью, то применяют принцип равных влияний, т.е. учитывают, что все слагаемые
,
равны между собой. Тогда абсолютные погрешности всех аргументов определяются формулой
.
1.6. Понятия устойчивости, корректности постановки задач и сходимости численного решения
Пусть в результате решения задачи по исходному значению величины х находится значение искомой величины у. Если исходная величина имеет абсолютную погрешность х, то решение у имеет погрешность у.
Задача называется устойчивой по исходному параметру х, если решение у непрерывно зависит от х, т.е. малое приращение исходной величины х приводит к малому приращению искомой величины у. Другими словами, малые погрешности в исходной величине приводят к малым погрешностям в результате расчетов.
Отсутствие устойчивости означает, что даже незначительные погрешности в исходных данных приводят к большим погрешностям в решении или вовсе к неверному результату.
Задача называется поставленной корректно, если для любых значений исходных данных из некоторого класса ее решение существует, единственно и устойчиво по исходным данным.
Понятие сходимости численного решения
вводится для итерационных процессов.
По результатам многократного повторения
итерационного процесса получаем
последовательность приближенных
значений
.
Говорят, что эта последовательность
сходится к точному решению, если
.
Таким образом, для получения решения задачи с необходимой точностью ее постановка должна быть корректной, а используемый численный метод должен обладать устойчивостью и сходимостью. Эти понятия будут рассматриваться в последующих разделах курса.
1.7. Некоторые обобщенные требования к выбору численных методов
Рассмотренные выше вопросы о погрешностях являются одними из важнейших моментов при выборе численного метода. В основе выбора численного метода лежат следующие соображения.
1) Можно утверждать, что нет ни одного метода, пригодного для решения всех задач одного и того же класса. Поэтому всегда стоит задача выбора численного метода (ЧМ), сообразуясь из конкретной технической задачи.
2) Численный метод можно считать удачно выбранным:
– если его погрешность в несколько раз меньше неустранимой погрешности, а погрешность округлений в несколько раз меньше погрешности метода;
– если неустранимая погрешность отсутствует, то погрешность метода должна быть несколько меньше заданной точности;
– завышенное снижение погрешности численного метода приводит не к повышению точности результатов, а к необоснованному увеличению объема вычислений.
3) Предпочтение отдается методу, который:
– реализуется с помощью меньшего числа действий;
– требует меньшего объема памяти ЭВМ;
– логически является более простым.
Перечисленные условия обычно противоречат друг другу, поэтому часто при выборе численного метода приходится соблюдать компромисс между ними.
4) Численный метод должен обладать устойчивостью и сходимостью.
5) По возможности нужно прибегать к существующему программному обеспечению ЭВМ для решения типовых задач.
6) Нужно помнить всегда, что ЭВМ многократно увеличивает некомпетентность Исполнителя технической задачи.