
- •Предмет и система правовой статистики.
- •Особенности юридической статистики. Методологические особенности правовой статистики и ее связь с другими науками и учебными дисциплинами
- •Современная организация правовой статистики в Российской Федерации.
- •Научно-практическое значение материалов правовой статистики.
- •История уголовно-правовой статистики советского периода.
- •Понятие статистического наблюдения, этапы его проведения.
- •Организационные вопросы статистического наблюдения.
- •Ошибки регистрации и репрезентативности.
- •Единый учет преступлений и документы первичного учета в правоохранительных органах.
- •Выборочный метод. Генеральная и выборочная совокупность. Типы выборок.
- •Табличный и графический методы представления данных статистики.
- •Существуют правила построения таблиц:
- •Статистическое распределение выборки. Эмпирическая функция распределения. Свойства эмпирической функции распределения.
- •Определения
- •Свойства эмпирической функции распределения Эмпирическое распределение для фиксированного
- •Числовые характеристики статистического распределения (выборочные среднее, дисперсия, среднеквадратичное отклонение, мода, медиана, моменты, асимметрия и эксцесс, квантили).
- •Понятие дисперсии
- •Виды дисперсии
- •Правило сложения дисперсии в статистике
- •Свойства дисперсии
- •Основные сведения
- •[Править]Правило трёх сигм
- •[Править]Интерпретация величины среднеквадратического отклонения
- •[Править]Практическое применение
- •[Править]Климат
- •[Править]Спорт
- •[Править]Технический анализ
- •[Править]Пример использования
- •[Править]Определение
- •[Править]Замечания
- •[Править]Дециль
- •[Править]Перцентиль
- •[Править]Квантили стандартного нормального распределения
- •[Править]Определение
- •[Править]Замечания
- •[Править]Таблица квантилей
- •Оценка параметра и свойства оценок. Статистические оценки параметров распределения
- •Точечное оценивание параметров распределения.
- •Интервальное оценивание параметров распределения. Интервальное оценивание среднего квадратичного отклонения нормального распределения.
- •Статистическая гипотеза. Постановка задачи проверки статистических гипотез. Понятие статистической гипотезы
- •Ошибки первого и второго рода при проверке гипотез.
- •[Править]Определения
- •[Править]о смысле ошибок первого и второго рода
- •[Править]Вероятности ошибок (уровень значимости и мощность)
- •20. Проверка гипотез о законе распределения. Критерий согласия «Хи–квадрат» Пирсона
- •[Править]Статистика критерия
- •[Править]Правило критерия
- •Нормальный закон распределения и его основные характеристики.
- •[Править]Свойства
- •[Править]Моделирование нормальных случайных величин
- •[Править]Центральная предельная теорема
- •Статистические связи. Условное среднее. Причинная и функциональная связи. Статистическая связь
- •Парная корреляция. Уравнение регрессии. Линия регрессии.
- •[Править]Цели регрессионного анализа
- •[Править]Математическое определение регрессии
- •[Править]Метод наименьших квадратов (расчёт коэффициентов)
- •[Править]Интерпретация параметров регрессии
- •25. Корреляционный момент, коэффициент корреляции их свойства.
Понятие дисперсии
Дисперсия в статистике находится как среднее квадратическое отклонение индивидуальных значений признака в квадрате от средней арифметической. В зависимости от исходных данных она определяется по формулам простой и взвешенной дисперсий:
1. Простая дисперсия (для несгруппированных данных) вычисляется по формуле:
2. Взвешенная дисперсия (для вариационного ряда):
где n - частота (повторяемость фактора Х)
Виды дисперсии
Общая дисперсия измеряет вариацию признака по всей совокупности в целом под влиянием всех факторов, обуславливающих эту вариацию. Она равняется среднему квадрату отклонений отдельных значений признака х от общего среднего значения х и может быть определена как простая дисперсия или взвешенная дисперсия.
Внутригрупповая дисперсия характеризует случайную вариацию, т.е. часть вариации, которая обусловлена влиянием неучтенных факторов и не зависящую от признака-фактора, положенного в основание группировки. Такая дисперсия равна среднему квадрату отклонений отдельных значений признака внутри группы X от средней арифметической группы и может быть вычислена как простая дисперсия или как взвешенная дисперсия.
Таким образом, внутригрупповая дисперсия измеряет вариацию признака внутри группы и определяется по формуле:
где хi — групповая средняя; ni — число единиц в группе.
Например, внутригрупповые дисперсии, которые надо определить в задаче изучения влияния квалификации рабочих на уровень производительности труда в цехе показывают вариации выработки в каждой группе, вызванные всеми возможными факторами (техническое состояние оборудования, обеспеченность инструментами и материалами, возраст рабочих, интенсивность труда и т.д.), кроме отличий в квалификационном разряде (внутри группы все рабочие имеют одну и ту же квалификацию).
Средняя из внутри групповых дисперсий отражает случайную вариацию, т. е. ту часть вариации, которая происходила под влиянием всех прочих факторов, за исключением фактора группировки. Она рассчитывается по формуле:
Межгрупповая дисперсия характеризует систематическую вариацию результативного признака, которая обусловлена влиянием признака-фактора, положенного в основание группировки. Она равняется среднему квадрату отклонений групповых средних от общей средней. Межгрупповая дисперсия рассчитывается по формуле:
Правило сложения дисперсии в статистике
Согласно правилу сложения дисперсий общая дисперсия равна сумме средней из внутригрупповых и межгрупповых дисперсий:
Смысл этого правила заключается в том, что общая дисперсия, которая возникает под влиянием всех факторов, равняется сумме дисперсий, которые возникают под влиянием всех прочих факторов, и дисперсии, возникающей за счет фактора группировки.
Пользуясь формулой сложения дисперсий, можно определить по двум известным дисперсиям третью неизвестную, а также судить о силе влияния группировочного признака.
Свойства дисперсии
1. Если все значения признака уменьшить (увеличить) на одну и ту же постоянную величину, то дисперсия от этого не изменится. 2. Если все значения признака уменьшить (увеличить) в одно и то же число раз n, то дисперсия соответственно уменьшится (увеличить) в n^2 раз.
Среднеквадрати́ческое отклоне́ние (синонимы: среднеквадрати́чное отклоне́ние, квадрати́чное отклоне́ние; близкие термины: станда́ртное отклоне́ние, станда́ртный разбро́с) — в теории вероятностей и статистике наиболее распространённый показатель рассеивания значений случайной величины относительно её математического ожидания.