- •1.Методы исследования нейрофизиологии.
- •2. Состав и структура биологической мембраны
- •3. Биохимические особенности нервной ткани
- •6)Природа потенциала покоя и ионный состав клетки
- •Вывод уравнения Нернста
- •7)Условия возникновения пд. Закон «Все или ничего»
- •2) Закон «Все или ничего»
- •8). Абсолютная и относительная рефрактерность
- •Транспорт ионов
- •1) Активный и пассивный ионный транспорт
- •12)Симпатический отдел вегетативной нс и его роль в регуляции жизнедеятельности организма
- •14)Механизм распространения возбуждения по миелинизированным и немиелинезированным волокнам
- •1) Миелинизированные волокна
- •2) Немиелинизированные волокна
- •15)Классификация нервных волокон. Факторы, определяющие скорость проведения возбуждения по аксонам
- •1)Классификация Эрлангера-Гассера
- •Классификация по Ллойду
- •2) Факторы, определяющие скорость проведения возбуждения по аксонам
- •16). Классификация медиаторов и модуляторов цнс
- •2) Модуляторы
- •17). Критерии (признаки) медиатора
- •20) Норадренергическая система.
- •23) Серотонинергическая система регуляции
- •25) Тормозные медиаторы- аминокислоты.
- •По способу передачи сигналов:
- •27)Нервно-мышечные соединения.
- •31). Функции Продолговатого мозга
- •32) Функции Среднего мозга
- •38)Гипофиз и его гармоны
- •39. Железы внутренней секреции..
- •44) Морфофункциональная организация коры больших полушарий
По виду соединяемых клеток:
межнейронные – локализуются в ЦНС и вегетативных ганглиях;
нейроэффекторные – соединяют эфферентные нейроны соматической и вегетативной нервной системы с исполнительными клетками;
нейрорецепторные – осуществляют контакты во вторичных рецепторах между рецепторной клеткой и дендритом афферентного нейрона.
По эффекту: возбуждающие и тормозящие.
В зависимости от местоположения в ЦНС: аксосоматические, аксодендритные, аксоаксональные, дендросоматические и дедродендритные.
По способу передачи сигналов:
Химические – наиболее распространенные в ЦНС, в которых посредником (медиатором) передачи является химическое вещество. Химические синапсы по природе медиатора делят на холинэргические (медиатор – ацетилхолин), адренэргические ( норадреналин), дофаминэргические (дофамин), ГАМК-эргические (γ-аминомасляная кислота) и т.д.
Электрические, в которых сигналы передаются электрическим током;
Смешанные синапсы – электрохимические.
Механизм синаптической передачи сигналов.
► Химические синапсы – это преобладающий тип синапсов в мозгу млекопитающих и человека. В химическом синапсе выделяют пресинаптическое окончание, синаптическую щель и постсинаптическую мембрану.
В пресинаптическом окончании находятся синаптические пузырьки – везикулы – диаметром до 200 нм, которые образуются либо в теле нейрона и с помощью аксонного транспорта доставляются в пресинаптическое окончание, либо синтезируются (или ресинтезируются) в самом пресинаптическом окончании. Везикулы содержат медиаторы, необходимые для передачи влияния одной клетки на другую. Для синтеза медиатора нужны ферменты, которые образуются в теле клетки на рибосомах и доставляются в пресинаптическое окончание аксонным транспортом. Кроме везикул с медиатором в пресинаптическом окончании имеются митохондрии, которые обеспечивают энергией процесс синаптической передачи. Эндоплазматическая сеть окончания содержит депонированный Са+. Микротрубочки и микрофиламенты участвуют в передвижении везикул. Пресинаптическое окончание имеет пресинаптическую мембрану. Пресинаптической мембраной называют часть пресинаптического окончания, которая ограничивает синаптическую щель.
Синаптическая щель имеет ширину 20-50 нм. В ней содержится межклеточная жидкость и вещество мукополисахаридной природы в виде тяжей между пре- и постсинаптической мембранами. В синаптической щели также находятся ферменты, которые могут разрушать медиатор.
Постсинаптическая мембрана – утолщенная часть клеточной мембраны иннервируемой клетки, содержащая белковые рецепторы, имеющие ионные каналы и способные связывать молекулы медиатора. Постсинаптическую мембрану нервно-мышечного синапса называют также концевой пластинкой.
Потенциал действия поступает в пресинаптическое окончание.
После поступления ПД к пресинаптическому окончанию происходит деполяризация мембраны окончания, активируются потенциал-зависимые кальциевые каналы и в синаптическую терминаль входит Са+.
Повышение концентрации ионов Са+ активирует транспортную систему, что инициирует их экзоцитоз.
Содержимое везикул выделяется в синаптическую щель.
Молекулы медиатора, диффундируются в синаптической щели, связываются с рецепторами постсинаптической мембраны.
Рецепторы постсинаптической мембраны активируют ионные каналы.
В результате под действием медиатора происходит активация ионных каналов и переход по этим каналам ионов К+ и Nа+ по их градиентам концентрации. Движение ионов формирует постсинаптический потенциал, который по своим свойствам является локальным ответом.
Медиатор, находящийся в контакте с рецепторами постсинаптической мембраны и в синаптической щели, разрушается ферментами.
Продукты разрушения медиатора и не разрушенный медиатор всасываются преимущественно в пресинаптическое окончание, где осуществляется ресинтез медиатора и помещение его в везикулы.
На все эти процессы требуется определенное время, которое получило название синаптической задержки и составляет 0,2-0,5 мс. Синаптическая задержка пропорционально зависит от температуры.
Выделение молекул медиатора из пресинаптического окончания пропорционально количеству поступившего туда Са+ в степени n = 4. Следовательно, химическое звено пресинаптического окончания работает как усилитель электрических сигналов.
Электрические синапсы широко распространены в нервной системе беспозвоночных и низших позвоночных животных. У млекопитающих они имеются в стволе мозга в ядрах тройничного нерва, в вестибулярных ядрах Дейтериса и в нижней оливе. В электрических синапсах узкие щелевые контакты отличаются низким электрическим сопротивлением, в них почти нет токов утечки через внеклеточную среду, поэтому изменения потенциала в пресинаптической мембране могут эффективно передаваться на электрочувствительную постсинаптическую мембрану, которая под воздействием потенциалов действия пресинаптической мембраны изменяет ионную проницаемость и может генерировать потенциалы действия. В электрических синапсах проведение возбуждения происходит без синаптической задержки, ток возможен в обоих направлениях, но легче в одном. Эти синапсы дают возможность получать постоянные, повторяющиеся реакции и синхронизировать активность многих нейронов.
