Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Бычков Г.В. Рауба, Обрывалин Метод ТКМ лаб сва...doc
Скачиваний:
3
Добавлен:
25.09.2019
Размер:
5.19 Mб
Скачать

Г. В. БЫЧКОВ, А. А. РАУБА, А. В. ОБРЫВАЛИН

ТЕХНОЛОГИЯ КОНСТРУКЦИОННЫХ МАТЕРИАЛОВ

РАЗДЕЛ

«Сварочное производство»

Омск 2011

Министерство путей сообщения Российской Федерации

Омский государственный университет путей сообщения

______________________________

Г. В. Бычков, а. А. Рауба, А. В. Обрывалин

ТЕХНОЛОГИЯ КОНСТРУКЦИОННЫХ МАТЕРИАЛОВ

РАЗДЕЛ

«Сварочное производство»

Утверждено редакционно-издательским советом университета

в качестве методических указаний к лабораторным работам

для студентов второго и третьего курсов

Омск 2011

УДК 620.22 (076.5)

ББК 30.3я73

Б 95

Технология конструкционных материалов. Раздел «Сварочное производство»: Методические указания к лабораторным работам/ Г. В. Бычков, А. А. Рауба; А. В. Обрывалин Омский гос. ун-т путей сообщения. Омск, 2011. 23 с.

В методических указаниях представлены три лабораторные работы, в которых рассмотрены структура и свойства зоны термического влияния сварного соединения, причины разрушения сварных швов, методика определения технологических коэффициентов при дуговой сварке стали, конструкция и принцип действия сварочного трансформатора ТС-300.

Методические указания предназначены для студентов первого, второго и третьего курсов, изучающих дисциплины «Технологические процессы машиностроительного производства», «Технология конструкционных материалов» и «Материаловедение и технология конструкционных материалов», очной и заочной форм обучения.

Библиогр.: 7 назв. Табл. 3. Черт. 3.

Рецензенты: доктор техн. наук А. В. Бородин;

доктор техн. наук А. Ю. Попов.

Омский гос. университет

путей сообщения, 2011

ОГЛАВЛЕние

Введение………………………………………………………………………..

5

Лабораторная работа 1. Изучение структуры сварного соединения……….

6

Лабораторная работа 2. Определение технологических коэффициентов

при дуговой сварке стали.......……………………

13

Лабораторная работа 3. Изучение конструкции, принципа действия

сварочного трансформатора тс-300 и

исследование его внешних характеристик………

18

Библиографический список…………………………………………………...

24

Введение

Сварка – технологический процесс получения неразъемных соединений материалов посредством установления межатомных связей между свариваемыми частями при их нагреве и пластическом деформировании.

Наибольшее распространение на ремонтных предприятиях железнодорожного транспорта получила ручная дуговая сварка. Источником теплоты при дуговой сварке служит электрическая дуга, которая горит между электродом и изделием, оплавляет кромки свариваемых поверхностей, заполняет зазор между ними расплавленным металлом электродного или присадочного материала, образуя сварочную ванну. После кристаллизации металла сварочной ванны образуется сварочный шов. Экономические показатели технологии и надежность сварного соединения, полученного дуговой сваркой, зависят от правильного выбора электрода, режима сварки и сварочного оборудования, а также от контроля качества сварного шва.

Лабораторная работа 1 изучение структуры сварного соединения

Цель работы:

1) изучить особенности формирования структуры и механических свойств металла шва и зоны термического влияния сварного соединения;

2) изучить основные дефекты сварных соединений.

    1. Краткие сведения из теории

      1. Основные понятия и определения по гост 2601-84

Сварка – получение неразъемных соединений посредством установления межатомных связей между соединяемыми частями при их нагревании и (или) пластическом деформировании.

Сварное соединение – неразъемное соединение, выполненное сваркой.

Сварной шов – участок сварного соединения, образовавшийся в результате кристаллизации расплавленного металла или в результате пластической деформации при сварке давлением или сочетания кристаллизации и деформации.

Образование сварного соединения начинается с возникновения сварочной ванны (часть металла свариваемого шва, находящаяся при сварке плавлением в жидком состоянии) за счет нагрева и расплавления электродного и основного металла. Сварочная ванна покрывается слоем жидкого шлака, защищающего ее от окружающей среды, под которым начинается кристаллизация расплавленного металла шва (металл шва – сплав, образованный расплавленными основным и наплавленным металлами или только переплавленным основным металлом).

Одновременно с образованием сварочной ванны и процессом кристаллизации металла шва происходит образование зоны сплавления (зона частично сплавившихся зерен на границе основного металла и металла шва). За счет тепла дуги и тепла кристаллизации сварочной ванны происходит нагрев околошовной зоны (ОШЗ) основного металла. В результате формируется зона термического влияния (ЗТВ) (участок основного металла, не подвергшийся расплавлению, структура и свойства которого изменились в результате нагрева при сварке).

1.1.2 Строение сварного шва

В зависимости от реальных условий процесса сварки, температуры, скорости нагрева и охлаждения различных участков металл сварного соединения неоднороден и состоит из следующих зон (Рис. 1).

М еталл шва – это та зона, в которой в связи с нагревом выше температуры плавления (линии ликвидус) свариваемый металл расплавляется в процессе сварки, перемешивается с металлом электрода и затем кристаллизуется. Металл шва имеет литую дендритную структуру и состоит из кристаллов столбчатой формы. Особенностью кристаллизации сварочной ванны является то, что в отличие от кристаллизации отливки в литейной форме, кристаллизация металла шва протекает при одновременном его подогреве со стороны источника тепла и быстром охлаждении за счет интенсивного теплоотвода в основной холодный металл.

Рис. 1 Макроструктура нахлесточного сварного соединения

Зона сплавлениярасположена на границе основного металла и металла шва. В данной зоне выделяется участок с крупными зернами, т. е. участок металла, который в процессе сварки нагревался до температуры выше линии солидус, но ниже линии ликвидус (в данной температурной области происходит частичное расплавление основного металла). В нее попадают химические элементы из металла электрода (из сварочной ванны). В месте примыкания к границе сплавления основного металла со швом, из-за большой разницы химического состава основного и электродного (присадочного) металлов может образоваться химическая неоднородность. Эта неоднородность может привести к скачкообразному изменению физико-механических свойств металла околошовной зоны и снижению надежности сварного соединения. Ширина зоны сплавления изменяется в пределах 0,1 – 0,4 мм и зависит от химического состава свариваемого металла (от температурного интервала «ликвидус – солидус»), от способа и режима сварки.

Зона термического влияния – часть основного металла, примыкающая к сварному шву, с измененными в процессе сварки структурой и свойствами. Общая ширина ЗТВ зависит от условий нагрева и охлаждения, от теплофизических свойств и толщины свариваемого металла, от метеоусловий и пр. (при дуговой сварке она составляет – 2 – 6, а при газовой – до 30 мм).

Изменение структуры в околошовной зоне, например на однопроходном стыковом соединении, можно проследить, поместив над сечением сварного соединения кривую распределения максимальной температуры, совместив ее в том же масштабе температуры с диаграммой состояния железо-цементит.

Намечая на диаграмме состояния сплавов характерные зоны и участки, перенесем их границы на график распределения температуры (рис. 2). Из точек пересечения горизонтальных линий с кривой охлаждения опустим перпендикуляры на рисунок сечения сварного соединения. Это позволит определить линейные границы отдельных участков зоны термического влияния. Наибольшее применение в сварочном производстве получили низко- и среднеуглеродистые стали. В процессе сварки плавлением низкоуглеродистых сталей применяют сварочные материалы, при которых металл шва получается либо низкоуглеродистым, либо низколегированным. Такие стали малочувствительны к скорости охлаждения и не образуют закалочных структур. Их структура, как правило, ферритно-перлитная.

Рассмотрим зону термического влияния сварного соединения (см. рис. 2, 3, 4):

1 – переходный участок или участок сплавления, обычно размер его невелик. Интервал температуры, для стали 20, около 1490 – 1520С. Структура стали – крупнозернистая, возможно образование видманштеттовой структуры (Рис. 4);

2 – участок перегрева (Рис. 3 б и 4). Металл нагревается выше 1100С, до температуры, близкой к линии солидус. В этом интервале температуры за счет роста зерна аустенита формируется крупнозернистая структура перегретой стали с пониженной ударной вязкостью. Часто на этом участке образуется видманштеттовая структура (крупнозернистая с зернами феррита иглообразной формы), что еще больше повышает хрупкость стали. Ширина этого участка – 1 – 3 мм;

3 – участок нормализации (Рис. 4). Металл нагревается выше третьей критической точки Ас3 (от 900 до 1100С). В процессе полной перекристаллизации в аустенит, на этом участке образуется мелкозернистая (сорбитообразная) структура, которая обеспечивает более высокие механические свойства стали, по сравнению со свойствами исходного металла и свойствами других участков зоны термического влияния. Ширина этого участка – 1,2 – 4 мм;

Рис. 2. Схема строения сварного шва

4 – участок неполной перекристаллизации (Рис. 4). Металл нагревается до температуры 725 – 850С (между первой Ас1 и третьей критическими точками Ас3). Процесс измельчения зерна происходит только за счет перекристаллизации той части структуры, которая занята перлитом, а размер зерен феррита не изменяется. Поэтому сталь на этом участке может состоять не только из мелких зерен, но и отдельных крупных зерен феррита. Сталь с разнозернистым строением имеет более низкие механические свойства, чем мелкозернистая сталь. Ширина этого участка – 0,7 – 4 мм;

5 – участок рекристаллизации. Температура нагрева этого участка ниже первой критической точки Ас1 (727С). При сварке горячекатаной или отожженной стали, на этом участке ЗТВ никакие структурные изменения в металле не происходят.

Если же сталь перед сваркой была наклепана (нагартована) в результате холодной пластической деформации (штамповка, гибка, правка), то при нагреве в интервале температуры 550 – 600С произойдет процесс рекристаллизации (рост новых равноосных зерен за счет исходных деформированных). По сравнению с исходным металлом прочность и твердость стали снизятся, а пластичность увеличится. В случае если температура нагрева металла на этом участке близка к первой критической точке (727С) и длительность пребывания его при этой температуре значительна, то происходит процесс собирательной рекристаллизации. При этом укрупняется зерно и происходит разупрочнение металла. Данный участок в этом случае называют участком разупрочнения.

а б в

Рис. 2 Структура стали Ст3сп при автоматической дуговой сварке: а – металл шва, феррит и перлит (проволока Св-08ГА, флюс АН-348А); б – участок перегрева зоны термического влияния (видманштеттовая структура); в – основной металл. ×100.

6 – участок синеломкости. Температура нагрева металла на данном участке сварного шва в интервале 200 – 400С, при котором на поверхности стали появляются синие цвета побежалости (пленки окислов). Характеризуется тем, что прочность и твердость металла повышаются, а пластичность и ударная вязкость – резко падают. Это явление получило название «синеломкость». Вероятной причиной этого является старением металла – выделение по границам зерен из пересыщенного твердого раствора дисперсных карбидов и нитридов.