
- •Усилители. Параметры и характеристики усилителей.
- •Линейные искажения в усилителях.
- •Нелинейные искажения в усилителях.
- •Переходная характеристика усилителя.
- •Амплитудно-фазовая характеристика усилителя.
- •11. Обратные связи в усилителях.
- •21. Усилители постоянного тока.
- •22. Методы борьбы с дрейфом нуля. Местные и глубокие обратные связи в упт.
- •23. Методы борьбы с дрейфом нуля. Балансные (мостовые) схемы.
- •24. Методы борьбы с дрейфом нуля. Дифференциальные каскады.
- •27. Операционные усилители.
- •Шумы в электронных схемах.
- •28. Инвертирующий усилитель
- •29. Неинвертирующий усилитель.
- •36. Ключ на полевых транзисторах.
- •42. Кмоп логика
- •32. Электронные ключи. Параметры и характеристики.
- •43. Триггерная ячейка.
- •38. Семейство логических элементов. Основные параметры и особенности
- •33. Ключ на бт. Построение передаточной характеристики
- •35. Ключ на переключателе тока.
- •37. Комплементарный ключ.
- •50. Мультиплексоры.
- •51. Преобразователи кодов.
- •52. Простейшие коды.
- •45. Интегральные триггеры.
- •44. Триггер с разделенными входами.
- •16. Однокаскадный усилитель rc-типа на бт с общим эмиттером (построение эквивалентной схемы).
- •17. Однокаскадный усилитель rc-типа на бт с общим эмиттером (анализ параметров по переменному току).
- •18. Однокаскадный усилитель rc-типа на бт с общим коллектором (анализ параметров по переменному току).
- •12. Влияние обратной связи на коэффициент усиления усилителей.
- •13. Влияние обратных связей на стабильность работы усилителей.
- •20. Усилительный каскад с последовательной оос по напряжению.
- •14. Термостабилизация в усилительных каскадах.
- •34. Улучшенные схемы ключей на бт.
- •25. Методы борьбы с дрейфом нуля. Метод модуляции-демодуляции.
- •15. Обратная связь в многокаскадных усилителях.
14. Термостабилизация в усилительных каскадах.
В схеме с коллекторной стабилизацией резистор Rб подключен к коллекторному выводу транзистора с напряжением Uкэо. Ток смещения Iбо определяется: Iбо≈Uкэо/Rб≈(Uип-IкоRк)/Rб.
Физический смысл коллекторной температурной стабилизации заключается в следующем. При повышении температуры коллекторный ток увеличивается, а коллекторное напряжение Uкэо уменьшается. Это приводит к уменьшению потенциала базы, а следовательно, к уменьшению тока базы Iбо и коллекторного тока Iк, который стремится к своему первоначальному значению. Таким образом, существенно ослабляется влияние температуры на характеристики усилительного каскада.
Наиболее эффективной является схема с эмиттерной температурной стабилизацией. Для повышения термостабильности данной схемы необходимо уменьшать отношение R1/R2 и увеличивать отношение Rэ.
Повышение температуры увеличивает ток Iко, что приводит к увеличению эмиттерного тока Iэо=Iко/I21б. Увеличивается падение напряжения на Rэ с указанной полярностью. При это потенциал эмиттера увеличивается, а напряжение база-эмиттер Uбэо уменьшается. Абсолютное значение напряжения: |Uбэо|=|UR2| - IэоRэ = UипR2/(R1+r2) – IэоRэ.
Введение резистора Rэ при отсутствии конденсатора Сэ изменяет работу усилительного каскада не только в режиме покоя, но и при наличии входного сигнала. Переменная составляющая эмиттерного тока создает на резисторе Rэ падение напряжения (напряжение обратной связи), которое уменьшает усиливаемое напряжение, подводимое к транзистору:
Uбэ=Uвх – Rэ(Iэо+Iэ).
Коэффициент усиления усилительного каскада будет уменьшаться.
34. Улучшенные схемы ключей на бт.

Для повышения быстродействия ключа необходимо уменьшить время рассасывания избыточных зарядов, т.е. транзистор должен работать на границе активного режима и режима насыщения. Для предотвращения насыщения транзистора в ключе используют нелинейную обратную связь. При микроэлектронном исполнении нелинейная обратная связь наиболее эффективна, если между коллектором и базой включается диод Шотки.
При отсутствии сигнала на входе схемы закрыты транзистор и диод Шотки, выходное напряжение велико (точка 1). При подаче на вход положительного сигнала транзистор открывается и рабочая точка по нагрузочной прямой начинает перемещается в точку 2. Ток коллектора растет, а потенциал коллектора уменьшается, и в момент времени t1 открывается диод Шотки. После этого входной ток перераспределяется между базой транзистора и диодной цепью так, что рабочая точка перемещается в точку О, в которой Iк=Iд+Iн. Точка О располагается в непосредственной близости к границе насыщения в области линейного участка характеристик. При подаче запирающего сигнала на вход схемы начинается спад коллекторного тока. Задержка начала нарастания коллекторного напряжения (времени t3) обусловлено временем, в течении которого ток диода уменьшается от начального значения Iд до нуля, и она составляет менее одной наносекунды. Спад коллекторного тока и нарастание коллекторного напряжения происходит, как у обычного транзисторного ключа.