
- •II силовые поля
- •Электростатическое поле. Электрический заряд и его свойства. Модель точечного заряда.
- •Взаимодействие неподвижных точечных электрических зарядов. Закон Кулона.
- •Напряженность электростатического поля. Силовые линии (линии напряженности) поля.
- •Напряжённость электростатического поля точечного заряда
- •Электростатическое поле системы зарядов. Принцип суперпозиции. Поле электрического диполя.
- •Поток вектора напряженности электростатического поля. Теорема Остроградского-Гауса.
- •Напряженность электростатического поля равномерно заряженной сферы.
- •Напряженность электростатического поля бесконечной равномерно заряженной плоскости.
- •Напряженность электростатического поля двух параллельных разноименно заряженных бесконечных плоскостей.
- •Напряженность электростатического поля двух параллельных одноименно заряженных бесконечных плоскостей.
- •Напряженность электростатического поля бесконечной равномерно заряженной цилиндрической поверхности (нити)
- •Напряженность электростатического поля шара. Равномерно заряженного по объему.
- •Работа сил электростатического поля по перемещению заряда.
- •Теорема о циркуляции вектора напряженности электростатического поля.
- •Потенциал и разность потенциалов электростатического поля. Эквипотенциальные поверхности.
- •Потенциал электростатического поля точечного заряда.
- •Связь напряженности и потенциала электростатического поля.
- •Потенциал электростатического поля системы зарядов. Принцип суперпозиции. Потенциал поля точечного диполя.
- •Потенциал и разность потенциалов электростатического поля равномерно заряженной сферической поверхности.
- •Потенциал и разность потенциалов электростатического поля бесконечной равномерно заряженной цилиндрической поверхности (нити).
- •Проводники в электростатическом поле. Электроемкость проводника.
- •Энергия системы зарядов, уединенного проводника и конденсатора. Энергия электростатического поля.
- •Диэлектрики в электростатическом поле. Поляризация диэлектриков. Диэлектрическая проницаемость среды.
- •Вектор электростатической индукции. Теорема Остроградского-Гауса для электростатического поля в диэлектрике.
- •Электростатический ток. Сила тока. Вектор плоскости (плотности) тока.
- •Источник тока. Разность потенциалов, напряжение, электродвижущая сила (эдс).
- •Закон Ома для однородного участка цепи. Сопротивление проводников.
- •Закон Ома для неоднородного участка цепи и для замкнутой цепи.
- •Закон Ома в дифференциальной форме.
- •Разветвленные электрические цепи. Правила Кирхгофа.
- •Работа и мощность постоянного тока. Закон Джоуля-Ленца.
- •Закон Био-Савара-Лапласа. Принцип суперпозиции.
- •Магнитное поле прямолинейного проводника с током.
- •Магнитное поле кругового витка с током.
- •Действие магнитного поля на проводник с током. Закон Ампера.
- •Взаимодействие прямолинейных параллельных токов.
- •Магнитное поле движущего электрического заряда.
- •Теорема о циркуляции вектора индукции магнитного поля.
- •Магнитное поле бесконечного прямолинейного проводника с током и бесконечно длинного соленоида.
- •Поток индукции магнитного поля. Теорема Остроградского-Гауса для магнитного поля.
- •Работа перемещения проводника и контура с током в магнитном поле.
- •Самоиндукция. Эдс (Электродвижущая сила) самоиндукции. Индуктивность.
- •Энергия и плотность магнитного поля.
- •Система уравнение Максвела для электромагнитного поля. Ток смещения.
Поток вектора напряженности электростатического поля. Теорема Остроградского-Гауса.
Число линий вектора E, пронизывающих некоторую поверхность S, называется потоком вектора напряженности NE.
Для вычисления потока вектора E необходимо разбить площадь S на элементарные площадки dS, в пределах которых поле будет однородным (рис.13.4).
Поток напряженности через такую элементарную площадку будет равен по определению(рис.13.5).
где
-
угол между силовой линией и нормалью
к
площадке dS;
-
проекция площадки dS на плоскость,
перпендикулярную силовым линиям. Тогда
поток напряженности поля через всю
поверхность площадки S будет равен
|
(13.4) |
Так
как
,
то
|
(13.5) |
где
-
проекция вектора
на
нормаль и к поверхности dS.
Напряженность электростатического поля равномерно заряженной сферы.
Пусть сферическая поверхность радиуса R (рис. 13.7) несет на себе равномерно распределенный заряд q, т.е. поверхностная плотность заряда в любой точке сферы будет одинакова.
Заключим нашу сферическую поверхность в симметричную поверхность S с радиусом r>R. Поток вектора напряженности через поверхность S будет равен
По теореме Гаусса
Следовательно
(13.8)
Сравнивая это соотношение с формулой для напряженности поля точечного заряда, можно прийти к выводу, что напряженность поля вне заряженной сферы такова, как если бы весь заряд сферы был сосредоточен в ее центре.
Для точек, находящихся на поверхности заряженной сферы радиуса R, по аналогии с вышеприведенным уравнением, можно написать
(13.9)
Проведем
через точку В, находящуюся внутри
заряженной сферической поверхности,
сферу S радиусом г<R. Внутри сферы S
зарядов нет, т.к. все они расположены на
внешней сферической поверхности, т.е.
Следовательно, по теореме Гаусса,
и напряженность электростатического
поля внутри полой равномерно заряженной
сферы будет равна нулю. Зависимость
напряженности поля заряженной сферы
от расстояния r приведена на рис. 13.8.
Напряженность электростатического поля бесконечной равномерно заряженной плоскости.
Пусть плоскость имеет бесконечную протяженность и заряд на единицу площади равен σ. Из законов симметрии следует, что поле направлено всюду перпендикулярно плоскости, и если не существует никаких других внешних зарядов, то поля по обе стороны плоскости должны быть одинаковы. Ограничим часть заряженной плоскости воображаемым цилиндрическим ящиком, таким образом, чтобы ящик рассекался пополам и его образующие были перпендикулярны, а два основания, имеющие площадь S каждое, параллельны заряженной плоскости
Суммарный
поток вектора; напряженности равен
вектору
, умноженному на площадь S первого
основания, плюс поток вектора
через противоположное основание. Поток
напряженности через боковую поверхность
цилиндра равен нулю, т.к. линии напряженности
их не пересекают. Таким образом
,
С другой стороны по теореме Гаусса
Следовательно
но
тогда напряженность поля бесконечной
равномерно заряженной плоскости будет
равна
(13.14)
В это выражение не входят координаты, следовательно электростатическое поле будет однородным, а напряженность его в любой точке поля одинакова.