
- •1) Непрерывно действующий отстойник для разделения суспензий.
- •2) Отстойная центрифуга
- •3) Механизированный отстойник непрерывного действия
- •4) Отстойная аппаратура.
- •5) Электрофильтр
- •Фильтрование
- •6) Фильтрующая центрифуга.
- •7) Ленточный фильтр.
- •8) Газовый рукавный фильтр
- •9) Барабанный вакуум-фильтр.
- •10) Дисковый вакуум-фильтр.
- •11) Устройство и принцип действия фильтр-пресса.
- •12) Способы перемешивания в жидких средах. Схемы установок.
- •13) Основные типы мешалок.
- •Циклонирование
- •14) Циклонная аппаратура
- •15) Единичный циклон.
- •Теплообменные аппараты
- •16) Кожухотрубчатый теплообменник с компенсацией температурных удлинений.
- •17) Многоходовые кожухотрубчатые теплообменники.
- •18) Спиральные теплообменники
- •Выпарные аппараты
- •19) Выпарной аппарат с центральной циркуляционной трубой.
- •20) Выпарной аппарат с выносной греющей камерой.
- •21) Выпарной аппарат с принудительной циркуляцией растворов.
- •Конденсация
- •22) Конденсатор смешения с барометрической трубой.
- •23) Конденсатоотводчик: устройство и назначение.
13) Основные типы мешалок.
Механическое перемешивание в жидкой среде осуществляется с помощью мешалок различного типа. Мешалка чаще всего представляет собой комбинацию лопастей, насаженных на вращающийся вал. Лопасти мешалок могут иметь разнообразную геометрическую форму, в соответствии с которой различают основные типы мешалок: лопастные, пропеллерные, турбинные.
Рис.1:а-лопастная,
б-пропеллерная
в-турбинная.
Рис.2: характер токов жидкости, возникающих в аппарате с лопастной мешалкой.
Лопастные мешалки. Рабочий орган-лопасти различной конфигурации. Для перемешивания суспензий, содержащих твердые частицы, скорость осаждения которых невелика, применяют лопастные мешалки с наклонными лопастями (при их работе усиливаются вертикальные токи жидкости, что способствует подъему твердых частиц со дна аппарата). При перемешивании лопастными мешалками густых жидкостей основная масса жидкости вращается в месте с лопастями, при этом эффективность перемешивания очень низкая. Для устранения этого явления в корпусе аппарата устанавливают режущие неподвижные перегородки. Для равномерной интенсивности перемешивания применяют рамные мешалки-комбинация вертикальных, горизонтальных и наклонных лопастей. Их недостаток-большой расход энергии.
Применение: для интенсификации тепловых, диффузионных и химических процессов; при растворении различных веществ и приготовлении эмульсий и суспензий.
Достоинства лопастных мешалок: простота устройства, низкая стоимость изготовления, хорошее перемешивание жидкостей. Недостатки: их применение малоэффективно для приготовления эмульсий из жидкостей, значительно отличающихся по удельному весу.
Пропеллерные мешалки. Перемешивающий орган-пропеллер двух-, трех- или четырехлопастный. Во время работы мешалки при обычных окружных скоростях конца лопастей пропеллера возникают интенсивные вертикальные токи жидкости. Один пропеллер обеспечивает интенсивное перемешивание жидкости в зоне высоты, равной диаметру аппарата. Если H>D, то устанавливают несколько пропеллеров. Применение: в процессах получения суспензий, при перемешивании вязких жидкостей. Достоинства: по сравнению с лопастными работают с большими скоростями вращения. Недостатки: сложное изготовление и стоимость выше, чем у лопастных.
Турбинные мешалки. Перемешиваемое устройство-турбинки (с прямыми, наклонными или криволинейными лопатками). Применяются для перемешивания вязких жидкостей, для получения суспензий с крупными твердыми частицами. Достоинства: скорость вращения лопаток больше, чем у пропеллерных мешалок. Недостатки: сложность изготовления и высокая стоимость.
Циклонирование
14) Циклонная аппаратура
Циклонный процесс-создание центробежной силы за счет завихрения потока, а аппарат неподвижен. Два вида циклонов: 1) газовый-для разделения газ+ТВ, дымов и газокапельных систем; 2) гидроциклоны – для разделения ж+тв, ж+газ, ж+ж, эмульсий (ж в ж).
Сущность
процесса: поток со взвешенными частицами
вводят в аппарат тангенциально через
входную трубу. Благодаря тангенциальному
вводу и наличию центральной выводной
трубы поток начинает вращаться вокруг
трубы, совершая при прохождении через
аппарат несколько оборотов.
Под действием возникающих центробежных сил взвешенные частицы отбрасываются к периферии, оседают на внутренней поверхности корпуса 1, а затем опускаются в коническое днище 2 и удаляются из аппарата через патрубок. Освобожденный от взвешенных частиц поток выводится из циклона через выводную трубу.
Единичный циклон:
1-корпус; 2-коническое днище; I-запыленный газ; II-очищенный газ; III-пыль.
Батарейные
циклоны.
Поскольку при данной окружной скорости величина центробежной силы обратно пропорциональна радиусу вращения Fц=mv2/r, оказалось целесообразным выполнять циклоны с корпусом малого диаметра. Аппарат заданной производительности выполняют в виде батареи из несколько параллельно работающих циклонов малого диаметра.
Запыленный газ вводится в среднюю часть аппарата I и распределяется по элементам 2, вмонтированным в перегородке 1. Очищенный газ удаляется из верхней части аппарата II, а осевшая пыль – из нижней III.
Аналогично циклонам устроены гидроциклоны для разделения суспензий.
G, A – очень малы в центробежном поле.
Fц=ρч*(πd3/6)*w2*r
B= ρс*(πd3/6)*w2*r- центростремительная сила
- сопротивление движению частицы
(πd3/6)*(ρч-
ρс)*w2*r-
=m*a=0
Центробежный фактор разделения показывает во сколько раз скорость осаждения частицы в центробежном поле больше скорости осаждения той же частицы в гравитационном поле.
η=(Сисх-СВ)/Сисх*100%-эффективность
разделения
∆Р=ξ*(w2вх*ρс/2)-сопротивление
Вывод: скорость подачи среды в циклоны ограничена.
w=ω*R, Кц=(ω2*R)/g=w2вх/Rg
Кц ↑ → R↓