
- •1. Типы связей в твердых телах (ионная, ковалентная, металлическая связь) Ионная связь
- •Ковалентная связь
- •Металлическая связь
- •2.Атомно-кристаллическое строение металла.
- •3. Кристаллографические обозначения атомов, плоскостей и направлений.
- •4. Анизотропия металлов
- •5. Строение реальных кристаллов
- •6 . Кристаллизации металла.
- •7. Строение слитка
- •8. Полиморфные превращения в металлах
- •9. Пластическая деформация и механические свойства металлов.
- •Механические свойства
- •10. Наклёп, возврат и рекристаллизация. Наклёп Наклёп – это совокупность структурных изменений и связанных с ними свойств при холодной пластичной деформации.
- •Возврат.
- •Рекристаллизация.
- •11. Химические соединения, твердые растворы, механические смеси.
- •Сплавом - называют результат сплавления двух или более компонентов.
- •Компоненты - это химически индивидуальные вещества образовывающие сплав.
- •Фаза – однородная часть системы отграниченная поверхностью раздела, при переходе через которую состав и свойства меняются скачкообразно.
- •12. Построение диаграмм состояния двойных систем
- •1 3. Диаграмма состояния для двухкомпонентной системы, образующая механическую смесь.
- •14.Правило отрезков.
- •15. Диаграмма состояния для сплавов с неограниченной растворимостью в твердом состоянии.
- •16. Диаграмма состояния для сплавов с ограниченной растворимостью в твердом состоянии(диаграмма с эвтектикой, диаграмма с перитектикой)
- •17,18. Диаграмма состояния с химическими соединениями.
- •Диаграмма состояния с устойчивым химическим соединением
- •Диаграмма состояния с неустойчивым химическим соединением
- •18. Диаграмма состояния с неустойчивым хим соединением
- •19. Диаграмма состояния железо-цементит.
- •20. Углеродистые стали.
- •Способы производства стали.
- •21. Влияние постоянных примесей на свойства сталей
- •22. Нагартованная сталь
- •23. Чугуны(белый, серый, высокопрочный, ковкий). Получение, структура, маркировка, область применения.
- •24. Основные виды термической обработки стали.
- •25.Превращения в стали при нагреве.
- •26. Рост зерна аустенита при нагреве.
- •27. Превращение переохлажденного аустенита ( распад аустенита).
- •Перлитное превращение.
- •Бейнитное превращение.
- •28. Мартенситное превращение
- •29. Превращение мартенсита и Аустенита при нагреве (отпуск стали)
- •30. Отпускная хрупкость стали
- •31. Технология термической обработки стали. Отжиг первого рода
- •32. Отжиг второго рода
- •33. Выбор температуры нагрева закалки.
- •34. Способы закалки.
- •35. Закалка с обработкой холодом
- •36. Отпуск стали
- •Низкий отпуск.
- •Средний отпуск
- •37. Поверхностная закалка
- •39. Цементация
- •40. Азотирование
- •41. Цианирование
- •42. Диффузионная металлизация
- •43. Конструкционные стали
- •44. Маркировка легированных сталей Маркировка легированных сталей
- •45. Цементуемые стали.
- •46. Улучшаемые стали
- •47. Пружинные стали
- •48. Шарикоподшипниковые стали
- •49. Инструментальные стали повышенной прокаливаемости
- •50. Инструментальные стали пониженной прокаливаемости
- •51. Быстрорежущие стали
- •52. Штамповые стали
- •53. Твердые сплавы
- •54. Алюминий и сплавы на основе алюминия
- •55. Медь и сплавы на основе меди
- •56. Сплавы на основе легкоплавких металлов
- •57. Основы порошковой металлургии
- •Формование(ф) или прессование порошков
29. Превращение мартенсита и Аустенита при нагреве (отпуск стали)
Отпуском называют термическую операцию, заключающуюся в нагреве закаленной стали до температуры ниже ac1, с последующей выдержкой и охлаждением с заданной скоростью. В процессе нагрева происходят объемные и структурные изменения в стали. Если в дилатометре – приборе, позволяющем фиксировать изменения длинны образца в зависимости от температуры, то самописец прибора будет фиксировать горизонтальную прямую линию 1.
При нагреве закаленной стали (кривая 2) до 80-1000C изменение в длине практически не наблюдается.
Начиная с температуры 800C имеет место сокращение длины образца. Вплоть до температуры 2000C происходит так называемое 1-е превращение, при отпуске, в результате мартенсита выделяется карбид Fe2C когерентно связанный с матричным твердым раствором. При этом степень тетрогональности мартенсита уменьшается, отношение c/a - стремится к 1, но не равно ей.
При нагреве выше 2000C происходит обратное. Наблюдается прирост длины образца. В интервале температур 200-3000C происходит 2-е превращение при отпуске. В интервале этих температур аустенит остаточный превращается в отпущенный мартенсит.
3-е превращение происходит при 300-400 градусах. В этом интервале температур происходит карбидное превращение. Метастабильный карбид Fe2C превращается в стабильный, в Fe3C. Одновременно происходит срыв когерентности и обособление карбидов. Снижается и уровень внутренних напряжений.
4-е превращение протекает при температуре выше 400 град., и состоит в коагуляции карбида. Структура стали после отпуска зависит от температуры отпуска.
При температуре отпуска 300-500 град., получается тростит отпуска.
При температуре 500-600 град. – сорбид отпуска, отличающегося от аналогичных структур, полученных при непрерывном охлаждении тем, что имеет зернистую морфологию, тогда как после непрерывного охлаждения из аустенитной области - пластинчатую морфологию. При одинаковой твердости тростит и сорбит отпуска по сравнению с троститом и сорбитом, полученным при непрерывном охлаждении, имеют более высокие значения в пределах текучести и ударной вязкости.
30. Отпускная хрупкость стали
Отпускная хрупкость — понижение вязкости и сопротивления хрупкому разрушению легированной стали при отпуске в определенном интервале темп-р, а также при медленном охлаждении после отпуска или отжига в интервале 650—450°.
Различают необратимую и обратимую отпускную хрупкость стали. Необратимая отпускная хрупкость стали проявляется в падении вязкости при отпуске в интервале 250—400°. Хром и марганец способствуют развитию необратимой отпускной хрупкости стали, молибден, вольфрам и ванадий не оказывают на нее влияния. Кремний, частично хром и др. элементы способствуют сдвигу необратимой О. х. с. в сторону более высокой темп-ры. Измельчение зерна приводит к уменьшению необратимой О. х. е., а сравнительно умеренная пластич. деформация полностью устраняет необратимую отпускную хрупкость стали. Данный вид хрупкости связан, видимо, с изменением состояния бывших границ зерен аустенита. Обратимая отпускная хрупкость стали проявляется в падении ударной вязкости легированной стали при медленном охлаждении в интервале 650— 450°, а также при более или менее длит, выдержках при отпуске в этом интервале температур. В то же время после быстрого охлаждения после отпуска при 650—450° сталь, склонная к обратимой отпускной хрупкости, приобретает нормальную вязкость. Возникшая в результате медленного охлаждения О. х. с. уничтожается повторным нагревом до темп-ры выше 650° и быстрым охлаждением. Необратимая О. х. с. проявляется не только при продолжит, отпуске в интервале 650— 450°, но и при медленном охлаждении после отпуска, а также при продолжит, нагреве (при 550—450°) отожженной или нормализованной стали. Обратимая О. х. с. проявляется в резком смещении порога хладноломкости в сторону более высокой темп-ры. Отпускная хрупкость большинства легированных сталей вызывает снижение ударной вязкости и сопротивление хрупкому разрушению. Излом ударных образцов из волокнистого превращается в межкристаллический. Механич. хар-ки, определяемые при комнатной темп-ре, за исключением очень малого роста предела текучести, на обратимую О. х. с. не реагируют. Только при очень сильном развитии обратимой отпускную хрупкость стали или при применении надрезанных образцов или низких темп-р испытания происходит понижение пластичности образцов при разрыве.