
- •1 Билет
- •1. Общая классификация сигналов.
- •2. Элементы цепей синусоидального тока. Резистор.
- •3. Интегрирующие цепи.
- •2 Билет
- •1. Импульсные сигналы.
- •2. Элементы цепей синусоидального тока. Конденсатор.
- •3. Преобразование Лапласа и его свойства.
- •1. Классификация сигналов по структуре и соответствующие им цепи.
- •2. Элементы цепей синусоидального тока. Катушка индуктивности.
- •3. Операторный метод анализа линейных стационарных систем.
- •4 Билет
- •1. Классификация цепей. Свойства линейных цепей с постоянными параметрами.
- •2. Общие комплексные сопротивления и проводимости цепей синусоидального тока.
- •3. Свойства передаточной функции. Формула обращения.
- •5 Билет
- •1. Свойства параметрических и нелинейных цепей. Этапы анализа цепей.
- •2. Последовательное соединение элементов цепи синусоидального тока.
- •3. Аналитические свойства входного сопротивления двухполюсника.
- •6 Билет
- •1. Элементы теории ортогональных сигналов.
- •2. Параллельное соединение элементов цепи синусоидального тока.
- •3. Синтез пассивных двухполюсников. Метод Фостера.
- •7 Билет
- •1. Связь обобщенного ряда Фурье и энергетических характеристик сигнала.
- •2. Резонанс напряжений.
- •3. Синтез пассивных двухполюсников. Метод Кауэра.
- •8 Билет
- •1. Гармонический анализ периодических сигналов.
- •2. Резонанс токов.
- •3. Четырехполюсники и их классификация.
- •9 Билет
- •1. Гармонический анализ непериодических сигналов. Преобразование Фурье.
- •2. Энергетический анализ цепей синусоидального тока.
- •3. Системы y и н параметров четырехполюсников.
- •10 Билет
- •1. Свойства преобразования Фурье. Сдвиг сигнала во времени и по частоте.
- •2. Согласование источника энергии с нагрузкой.
- •3. Системы z и а параметров.
- •11 Билет
- •1. Свойства преобразования Фурье. Изменение масштаба времени, дифференцирование и интегрирование колебаний.
- •2. Основные параметры цепей с индуктивно-связанными элементами.
- •3. Передаточная функция четырехполюсника и ее свойства.
- •12 Билет
- •1. Свойства преобразования Фурье. Сумма и произведение двух колебаний.
- •2. Индуктивная связь двух катушек.
- •3. Минимально-фазовые и неминимально-фазовые цепи. Коэффициент передачи мощности четырехполюсника.
- •13 Билет
- •1. Свойства преобразования Фурье. Взаимная заменяемость частоты и времени в преобразованиях Фурье.
- •2. Вариометры.
- •3. Фильтры и их общая классификация.
- •14 Билет
- •1. Распределение энергии в спектрах периодических сигналов.
- •2. Идеальный трансформатор.
- •3. Классификация фильтров по полосе пропускания.
- •15 Билет
- •1. Линейные цепи постоянного тока. Основные определения.
- •2. Элементы трехфазных систем. Симметричные и уравновешенные системы.
- •3. Алгоритм проектирования фильтров и допустимые пределы отклонения характеристик.
- •16 Билет
- •1. Элементы цепей постоянного тока. Резистор.
- •2. Соединение трехфазной системы звездой.
- •3. Фнч. Фильтр Баттерворта.
- •17 Билет
- •1. Элементы цепей постоянного тока. Катушка индуктивности.
- •2. Соединение трехфазной системы треугольником.
- •3. Фнч. Фильтр Чебышева.
- •18 Билет
- •1. Элементы цепей постоянного тока. Конденсатор.
- •2. Расчет симметричных режимов работы трехфазных систем.
- •3. Структурный синтез фнч.
- •19 Билет
- •1. Схемы замещения источников электрической энергии.
- •2. Расчет несимметричных режимов работы трехфазных систем.
- •3. Реализация фвч и пф.
- •20 Билет
- •1. Топологии цепей. Основные понятия.
- •2. Метод симметричных составляющих.
- •3. Передаточная функция системы с ос.
- •21 Билет
- •1. Топологии цепей. Матрицы соединений.
- •2. Свойства симметричных составляющих токов, напряжений и сопротивлений различных последовательностей трехфазных систем.
- •3. Устойчивость цепей с ос.
- •22 Билет
- •1. Законы Кирхгофа в линейных цепях.
- •2. Мощность трехфазных цепей.
- •3. Операционный усилитель.
- •23 Билет
- •1. Закон Ома для участка цепи с эдс.
- •2. Простейшие разрывные функции и их свойства.
- •3. Принцип построения активных rc-фильтров.
- •24 Билет
- •1. Правила делителей напряжения и тока.
- •2. Линейные стационарные системы и их математические модели.
- •3. Задача оптимальной фильтрации. Отношение сигнал/шум.
- •25 Билет
- •1. Эквивалентные преобразования линейных электрических цепей.
- •2. Импульсная характеристика линейной стационарной системы. Интеграл Дюамеля.
- •3. Критерий оптимальности линейного частотного фильтра.
- •26 Билет
- •1. Метод наложения.
- •2. Переходная характеристика линейной системы и ее связь с импульсной.
- •3. Согласованный линейный фильтр.
- •27 Билет
- •1. Метод эквивалентного генератора.
- •2. Частотный коэффициент передачи линейной стационарной системы.
- •3. Частотный коэффициент передачи согласованного фильтра.
- •28 Билет
- •1. Метод уравнений Кирхгофа.
- •2. Линейные динамические системы. Частотный коэффициент передачи линейной динамической системы.
- •3. Безынерционные нелинейные преобразования.
- •29 Билет
- •1. Метод контурных токов.
- •2. Законы коммутации в электрических цепях.
- •1 Закон коммутации:Ток в индуктивном элементе скачком измениться не может, т.Е. Ток до момента коммутации должен быть равен току в момент коммутации: .
- •3. Характеристики нелинейных элементов.
- •30 Билет
- •1. Метод узловых потенциалов.
- •2. Классический метод анализа переходных процессов.
- •3. Аппроксимация нелинейных характеристик.
- •31 Билет
- •1. Однофазные цепи синусоидального тока. Основные понятия.
- •2. Коэффициент передачи многокаскадных систем. Частотный коэффициент передачи мощности.
- •3. Воздействие гармонических колебаний на цепи с безынерционными нелинейными элементами.
- •32 Билет
- •1. Изображение синусоидальных функций в декартовой плоскости. Векторные диаграммы.
- •2. Спектральный метод анализа линейных стационарных систем.
- •3. Бигармоническое воздействие на нелинейные элементы.
- •33 Билет
- •1. Комплексные изображения синусоидальных функций.
- •2. Дифференцирующие цепи.
- •3. Классификация фильтров по полосе пропускания.
25 Билет
1. Эквивалентные преобразования линейных электрических цепей.
основные эквивалентные преобразования:
РИН ↔РИТ.
условие
эквивалентности:
.
При этом идеальные источники напряжения и тока не взаимозаменяемы.
Замена нескольких последовательно соединённых элементов одним эквивалентным:
При
этом
,
где
.
Замена нескольких параллельно соединённых сопротивлений (проводимостей) одним эквивалентным:
При
этом
.
Замена нескольких последовательно соединённых источников напряжения (РИН) и их внутренних сопротивлений:
При этом эквивалентные значения будут равны сумме (с учетом направлений ЭДС):
.
Замена параллельного соединения нескольких источников тока (РИТ) и их проводимостей одним эквивалентным:
Результирующие значения также будут суммироваться с учетом направлений токов:
.
Замена нескольких параллельно соединённых реальных источников напряжения одним эквивалентным источником тока.
Замена нескольких последовательно соединённых реальных источников тока одним эквивалентным РИН.
Взаимные преобразования треугольника и звезды:
При
этом:
;
;
;
И
;
;
.
Если
в узлах «звезды»
, то в ветвях «треугольника»:
2. Импульсная характеристика линейной стационарной системы. Интеграл Дюамеля.
импульсной характеристикой системы называется функция h(t), являющаяся откликом системы на входной сигнал вида (t), т.е. h(t) удовлетворяет следующему уравнению:
h(t) = T (t).
при смещении входного воздействия во времени на t0:
h(t - t0) = T (t - t0).
C физической точки зрения импульсная характеристика приближенно отображает реакцию системы на входной импульсный сигнал произвольной формы с единичной площадью при условии, что длительность этого сигнала пренебрежимо мала по сравнению с характерным временем установления стационарного состояния системы.
Интеграл
Дюамеля.
В силу фильтрующего свойства дельта-функции
сигнал всегда может быть представлен
следующим образом:
Тогда
отвечающая ему выходная реакция:
интеграл
Дюамеля
и является основной
формулой временного метода анализа
систем.
Парциальные импульсные характеристики hij(t) (i = 1,2, .., n; j = 1,2, .., m), каждая из которых отображает сигнал на i-ом выходе при подаче на j-ый вход дельта-функции. Совокупность функций hij(t) образует матрицу импульсных характеристик:
Формула
интеграла Дюамеля в многомерном случае
приобретает вид:
где Uвых(t)
– n-мерный
вектор,
Uвх(t)
– m-мерный
вектор.
Условие физической реализуемости. Для любых видов импульсных характеристик физически реализуемых систем всегда должен выполняться важнейший принцип: выходной сигнал, отвечающий импульсному входному воздействию, не может возникнуть до момента подачи сигнала на вход. Изложенный принцип накладывает очень простое ограничение на вид допустимых импульсных характеристик: h(t) = 0 при t < 0.
Для
физически реализуемой системы верхний
предел в формуле интеграла Дюамеля
может быть заменен на текущее значение
времени:
физический
смысл: линейная стационарная система
производит операцию взвешенного
суммирования всех мгновенных значений
сигнала, поступивших на вход и
существовавших «в прошлом» при -
<
< t.
Роль весовой функции при этом выполняет
импульсная характеристика системы.
Принципиально важно, что физически
реализуемая система ни при каких
обстоятельствах не способна оперировать
с информацией, заключенной в «будущих»
значениях сигнала.