
- •1 Билет
- •1. Общая классификация сигналов.
- •2. Элементы цепей синусоидального тока. Резистор.
- •3. Интегрирующие цепи.
- •2 Билет
- •1. Импульсные сигналы.
- •2. Элементы цепей синусоидального тока. Конденсатор.
- •3. Преобразование Лапласа и его свойства.
- •1. Классификация сигналов по структуре и соответствующие им цепи.
- •2. Элементы цепей синусоидального тока. Катушка индуктивности.
- •3. Операторный метод анализа линейных стационарных систем.
- •4 Билет
- •1. Классификация цепей. Свойства линейных цепей с постоянными параметрами.
- •2. Общие комплексные сопротивления и проводимости цепей синусоидального тока.
- •3. Свойства передаточной функции. Формула обращения.
- •5 Билет
- •1. Свойства параметрических и нелинейных цепей. Этапы анализа цепей.
- •2. Последовательное соединение элементов цепи синусоидального тока.
- •3. Аналитические свойства входного сопротивления двухполюсника.
- •6 Билет
- •1. Элементы теории ортогональных сигналов.
- •2. Параллельное соединение элементов цепи синусоидального тока.
- •3. Синтез пассивных двухполюсников. Метод Фостера.
- •7 Билет
- •1. Связь обобщенного ряда Фурье и энергетических характеристик сигнала.
- •2. Резонанс напряжений.
- •3. Синтез пассивных двухполюсников. Метод Кауэра.
- •8 Билет
- •1. Гармонический анализ периодических сигналов.
- •2. Резонанс токов.
- •3. Четырехполюсники и их классификация.
- •9 Билет
- •1. Гармонический анализ непериодических сигналов. Преобразование Фурье.
- •2. Энергетический анализ цепей синусоидального тока.
- •3. Системы y и н параметров четырехполюсников.
- •10 Билет
- •1. Свойства преобразования Фурье. Сдвиг сигнала во времени и по частоте.
- •2. Согласование источника энергии с нагрузкой.
- •3. Системы z и а параметров.
- •11 Билет
- •1. Свойства преобразования Фурье. Изменение масштаба времени, дифференцирование и интегрирование колебаний.
- •2. Основные параметры цепей с индуктивно-связанными элементами.
- •3. Передаточная функция четырехполюсника и ее свойства.
- •12 Билет
- •1. Свойства преобразования Фурье. Сумма и произведение двух колебаний.
- •2. Индуктивная связь двух катушек.
- •3. Минимально-фазовые и неминимально-фазовые цепи. Коэффициент передачи мощности четырехполюсника.
- •13 Билет
- •1. Свойства преобразования Фурье. Взаимная заменяемость частоты и времени в преобразованиях Фурье.
- •2. Вариометры.
- •3. Фильтры и их общая классификация.
- •14 Билет
- •1. Распределение энергии в спектрах периодических сигналов.
- •2. Идеальный трансформатор.
- •3. Классификация фильтров по полосе пропускания.
- •15 Билет
- •1. Линейные цепи постоянного тока. Основные определения.
- •2. Элементы трехфазных систем. Симметричные и уравновешенные системы.
- •3. Алгоритм проектирования фильтров и допустимые пределы отклонения характеристик.
- •16 Билет
- •1. Элементы цепей постоянного тока. Резистор.
- •2. Соединение трехфазной системы звездой.
- •3. Фнч. Фильтр Баттерворта.
- •17 Билет
- •1. Элементы цепей постоянного тока. Катушка индуктивности.
- •2. Соединение трехфазной системы треугольником.
- •3. Фнч. Фильтр Чебышева.
- •18 Билет
- •1. Элементы цепей постоянного тока. Конденсатор.
- •2. Расчет симметричных режимов работы трехфазных систем.
- •3. Структурный синтез фнч.
- •19 Билет
- •1. Схемы замещения источников электрической энергии.
- •2. Расчет несимметричных режимов работы трехфазных систем.
- •3. Реализация фвч и пф.
- •20 Билет
- •1. Топологии цепей. Основные понятия.
- •2. Метод симметричных составляющих.
- •3. Передаточная функция системы с ос.
- •21 Билет
- •1. Топологии цепей. Матрицы соединений.
- •2. Свойства симметричных составляющих токов, напряжений и сопротивлений различных последовательностей трехфазных систем.
- •3. Устойчивость цепей с ос.
- •22 Билет
- •1. Законы Кирхгофа в линейных цепях.
- •2. Мощность трехфазных цепей.
- •3. Операционный усилитель.
- •23 Билет
- •1. Закон Ома для участка цепи с эдс.
- •2. Простейшие разрывные функции и их свойства.
- •3. Принцип построения активных rc-фильтров.
- •24 Билет
- •1. Правила делителей напряжения и тока.
- •2. Линейные стационарные системы и их математические модели.
- •3. Задача оптимальной фильтрации. Отношение сигнал/шум.
- •25 Билет
- •1. Эквивалентные преобразования линейных электрических цепей.
- •2. Импульсная характеристика линейной стационарной системы. Интеграл Дюамеля.
- •3. Критерий оптимальности линейного частотного фильтра.
- •26 Билет
- •1. Метод наложения.
- •2. Переходная характеристика линейной системы и ее связь с импульсной.
- •3. Согласованный линейный фильтр.
- •27 Билет
- •1. Метод эквивалентного генератора.
- •2. Частотный коэффициент передачи линейной стационарной системы.
- •3. Частотный коэффициент передачи согласованного фильтра.
- •28 Билет
- •1. Метод уравнений Кирхгофа.
- •2. Линейные динамические системы. Частотный коэффициент передачи линейной динамической системы.
- •3. Безынерционные нелинейные преобразования.
- •29 Билет
- •1. Метод контурных токов.
- •2. Законы коммутации в электрических цепях.
- •1 Закон коммутации:Ток в индуктивном элементе скачком измениться не может, т.Е. Ток до момента коммутации должен быть равен току в момент коммутации: .
- •3. Характеристики нелинейных элементов.
- •30 Билет
- •1. Метод узловых потенциалов.
- •2. Классический метод анализа переходных процессов.
- •3. Аппроксимация нелинейных характеристик.
- •31 Билет
- •1. Однофазные цепи синусоидального тока. Основные понятия.
- •2. Коэффициент передачи многокаскадных систем. Частотный коэффициент передачи мощности.
- •3. Воздействие гармонических колебаний на цепи с безынерционными нелинейными элементами.
- •32 Билет
- •1. Изображение синусоидальных функций в декартовой плоскости. Векторные диаграммы.
- •2. Спектральный метод анализа линейных стационарных систем.
- •3. Бигармоническое воздействие на нелинейные элементы.
- •33 Билет
- •1. Комплексные изображения синусоидальных функций.
- •2. Дифференцирующие цепи.
- •3. Классификация фильтров по полосе пропускания.
17 Билет
1. Элементы цепей постоянного тока. Катушка индуктивности.
Катушка индуктивности обладает способностью только накапливать электрическую энергию в магнитном поле. Основными ее параметрами являются следующие:
Магнитный
поток самоиндукции – равен
потоку вектора магнитной индукции В
через площадь поверхности S:
;
при этом:
-
для нелинейных;
Потокосцепление
определяется
как:
.
Основной
параметр катушки индуктивности –
отношение потокосцепления к току,
протекающему через витки катушки –
индуктивность самоиндукции:
.
(*)
Основной
характеристикой катушки индуктивности
является вебер-амперная
характеристика. Она может быть линейной
и нелинейной. Для нелинейных катушек
индуктивности их вектор магнитной
индукции является нелинейной функцией
напряжённости магнитного поля:
что
обусловлено наличием у них сердечников
из ферромагнитных материалов.
При
этом
где
(магнитная
постоянная);
(абсолютная
магнитная проницаемость);
- относительная магнитная проницаемость,
определяемая свойствами используемых
ферромагнитных материалов; тогда
Для
нелинейных катушек (без учета явления
магнитного гистерезиса) существует два
основных параметра:1.
2.
Согласно
закону Фарадея-Максвелла ЭДС самоиндукции
в катушке индуктивности определяется
скоростью изменения потокосцепления
с магнитным полем:
-
из (*): w
dФ
= L
di.Тогда
напряжение на катушке:
и
ток через нее:
где
i(0)
– начальное значение тока в индуктивном
элементе, протекавшего до начала анализа
процессов в нем (предыстория процесса).Тогда
мгновенная мощность катушки с учетом
(*):
т.е. в зависимости от направления тока
мгновенная мощность катушки может быть
положительной, т.е. запасаться в магнитном
поле, либо отрицательной, т.е. отдаваться
во внешнюю цепь. И, соответственно:
энергия,
запасаемая в катушке индуктивности.
2. Соединение трехфазной системы треугольником.
В
связи с тем, что значительная часть
приемников, включаемых в трехфазные
цепи, бывает несимметричной, очень важно
на практике, например, в схемах с
осветительными приборами, обеспечивать
независимость режимов работы отдельных
фаз. Кроме четырехпроводной, подобными
свойствами обладают и трехпроводные
цепи при соединении фаз приемника в
треугольник. Но в треугольник также
можно соединить и фазы генератора .
Для
симметричной системы ЭДС имеем (по 2-му
закону Кирхгофа)
.
Таким
образом, при отсутствии нагрузки в фазах
генератора в схеме токи будут равны
нулю. Однако, если поменять местами
начало и конец любой из фаз, то
и
в треугольнике будет протекать ток
короткого замыкания. Следовательно,
для треугольника нужно строго соблюдать
порядок соединения фаз: начало одной
фазы соединяется с концом другой. Схема
соединения фаз генератора и приемника
в треугольник представлена на рис. 9.
Очевидно,
что при соединении в треугольник линейные
напряжения равны соответствующим
фазным. По первому закону Кирхгофа связь
между линейными и фазными токами
приемника определяется соотношениями
А
налогично
можно выразить линейные токи через
фазные токи генератора. На рис представлена
векторная диаграмма симметричной
системы линейных и фазных токов. Ее
анализ показывает, что при симметрии
токов